These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31468580)

  • 1. An Anionic Ring Locked into an Anionic Axle: A Metastable Rotaxane with Chemically Activated Electrostatic Stoppers.
    Luna-Ixmatlahua RA; Carrasco-Ruiz A; Cervantes R; Vela A; Tiburcio J
    Chemistry; 2019 Nov; 25(62):14042-14047. PubMed ID: 31468580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotaxane and catenane host structures for sensing charged guest species.
    Langton MJ; Beer PD
    Acc Chem Res; 2014 Jul; 47(7):1935-49. PubMed ID: 24708030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Difference Between Rotaxane and Pseudorotaxane.
    Sun HL; Zhang HY; Dai Z; Han X; Liu Y
    Chem Asian J; 2017 Jan; 12(2):265-270. PubMed ID: 27897389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentafluorophenyl Esters as Exchangeable Stoppers for the Construction of Photoactive [2]Rotaxanes.
    Rémy M; Nierengarten I; Park B; Holler M; Hahn U; Nierengarten JF
    Chemistry; 2021 Jun; 27(33):8492-8499. PubMed ID: 33826199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Stranded Tile Stoppers for Interlocked DNA Architectures.
    Valero J; Lohmann F; Keppner D; Famulok M
    Chembiochem; 2016 Jun; 17(12):1146-9. PubMed ID: 26972112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A double-stranded DNA rotaxane.
    Ackermann D; Schmidt TL; Hannam JS; Purohit CS; Heckel A; Famulok M
    Nat Nanotechnol; 2010 Jun; 5(6):436-42. PubMed ID: 20400967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ring-through-ring molecular shuttling in a saturated [3]rotaxane.
    Zhu K; Baggi G; Loeb SJ
    Nat Chem; 2018 Jun; 10(6):625-630. PubMed ID: 29713030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Stepwise Synthetic Routes toward a Hetero[4]rotaxane.
    Luo QF; Zhu L; Rao SJ; Li H; Miao Q; Qu DH
    J Org Chem; 2015 May; 80(9):4704-9. PubMed ID: 25874382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible photoswitching of rotaxane character and interplay of thermodynamic stability and kinetic lability in a self-assembling ring-axle molecular system.
    Baroncini M; Silvi S; Venturi M; Credi A
    Chemistry; 2010 Oct; 16(38):11580-7. PubMed ID: 20842670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of a supramolecular network with pseudo-rotaxane cross-linking nodes and its transformation into a mechanically locked structure by rotaxane formation.
    Soto MA; Tiburcio J
    Chem Commun (Camb); 2016 Dec; 52(98):14149-14152. PubMed ID: 27869280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotaxane formation by an allosteric pseudomacrocyclic anion receptor utilising kinetically labile copper(I) coordination properties.
    Aizawa T; Akine S; Saiki T; Nakamura T; Nabeshima T
    Dalton Trans; 2022 Nov; 51(45):17277-17282. PubMed ID: 36317492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halotriazolium axle functionalised [2]rotaxanes for anion recognition: investigating the effects of halogen-bond donor and preorganisation.
    Mercurio JM; Knighton RC; Cookson J; Beer PD
    Chemistry; 2014 Sep; 20(37):11740-9. PubMed ID: 25112862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Operative Electrostatic Slipping Mechanism along Macrocycle Flexibility Accelerates Guest Sliding during pseudo-Rotaxane Formation.
    Catalán AC; Loredo AA; Cervantes R; Tiburcio J
    ChemistryOpen; 2022 Jun; 11(6):e202200112. PubMed ID: 35723426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-based rotaxanes and catenanes: an emerging class of supramolecular chemistry systems.
    Moretto A; Crisma M; Formaggio F; Toniolo C
    Biomol Concepts; 2012 Apr; 3(2):183-92. PubMed ID: 25436531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design for Rotaxane Synthesis through Intramolecular Slippage: Control of Activation Energy by Rigid Axle Length.
    Masai H; Terao J; Fujihara T; Tsuji Y
    Chemistry; 2016 May; 22(19):6624-30. PubMed ID: 27027800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic and Neutral Rotaxanes Having Different Functional Groups in the Axle Molecule and Their Coordination to Pt
    Yu G; Suzaki Y; Osakada K
    Chem Asian J; 2017 Feb; 12(3):372-377. PubMed ID: 27973709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and photoinduced electron transfer processes of rotaxanes bearing [60]fullerene and zinc porphyrin: effects of interlocked structure and length of axle with porphyrins.
    Sandanayaka AS; Watanabe N; Ikeshita K; Araki Y; Kihara N; Furusho Y; Ito O; Takata T
    J Phys Chem B; 2005 Feb; 109(7):2516-25. PubMed ID: 16851251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the rate of shuttling motions in [2]rotaxanes by electrostatic interactions: a cation as solvent-tunable brake.
    Ghosh P; Federwisch G; Kogej M; Schalley CA; Haase D; Saak W; Lützen A; Gschwind RM
    Org Biomol Chem; 2005 Aug; 3(15):2691-700. PubMed ID: 16032347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotaxanating Metallo-supramolecular Nano-cylinder Helicates to Switch DNA Junction Binding.
    Hooper CAJ; Cardo L; Craig JS; Melidis L; Garai A; Egan RT; Sadovnikova V; Burkert F; Male L; Hodges NJ; Browning DF; Rosas R; Liu F; Rocha FV; Lima MA; Liu S; Bardelang D; Hannon MJ
    J Am Chem Soc; 2020 Dec; 142(49):20651-20660. PubMed ID: 33215921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjusting the Dynamism of Covalent Imine Chemistry in the Aqueous Synthesis of Cucurbit[7]uril-based [2]Rotaxanes.
    Neira I; Blanco-Gómez A; Quintela JM; Peinador C; García MD
    Org Lett; 2019 Nov; 21(22):8976-8980. PubMed ID: 31670524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.