These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31468704)

  • 1. Development of a 3D Tissue-Engineered Skeletal Muscle and Bone Co-culture System.
    Wragg NM; Mosqueira D; Blokpeol-Ferreras L; Capel A; Player DJ; Martin NRW; Liu Y; Lewis MP
    Biotechnol J; 2020 Jan; 15(1):e1900106. PubMed ID: 31468704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagen scaffolds in vitro.
    Gersbach CA; Byers BA; Pavlath GK; Guldberg RE; García AJ
    Biotechnol Bioeng; 2004 Nov; 88(3):369-78. PubMed ID: 15486943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro.
    Aswad H; Jalabert A; Rome S
    BMC Biotechnol; 2016 Apr; 16():32. PubMed ID: 27038912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors.
    Cerino G; Gaudiello E; Grussenmeyer T; Melly L; Massai D; Banfi A; Martin I; Eckstein F; Grapow M; Marsano A
    Biotechnol Bioeng; 2016 Jan; 113(1):226-36. PubMed ID: 26126766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of myotube contraction using electrical pulse stimulation for bio-actuator.
    Yamasaki K; Hayashi H; Nishiyama K; Kobayashi H; Uto S; Kondo H; Hashimoto S; Fujisato T
    J Artif Organs; 2009; 12(2):131-7. PubMed ID: 19536631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of an in vitro bioassay to monitor growth and formation of myotubes in real time.
    Murphy SM; Kiely M; Jakeman PM; Kiely PA; Carson BP
    Biosci Rep; 2016 Jun; 36(3):. PubMed ID: 27009307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of potential modifiers of Runx2/Cbfa1 activity in C2C12 cells in response to bone morphogenetic protein-7.
    Gu K; Zhang L; Jin T; Rutherford RB
    Cells Tissues Organs; 2004; 176(1-3):28-40. PubMed ID: 14745233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Chicken Contractile Skeletal Muscle Structure Using Decellularized Plant Scaffolds.
    Hong TK; Do JT
    ACS Biomater Sci Eng; 2024 May; 10(5):3500-3512. PubMed ID: 38563398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V.
    Fujita H; Shimizu K; Nagamori E
    Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of a removable tissue-engineered muscle with artificial tendons.
    Nakamura T; Takagi S; Kamon T; Yamasaki KI; Fujisato T
    J Biosci Bioeng; 2017 Feb; 123(2):265-271. PubMed ID: 27622541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creating Interactions between Tissue-Engineered Skeletal Muscle and the Peripheral Nervous System.
    Smith AS; Passey SL; Martin NR; Player DJ; Mudera V; Greensmith L; Lewis MP
    Cells Tissues Organs; 2016; 202(3-4):143-158. PubMed ID: 27825148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model.
    Gawlitta D; Boonen KJ; Oomens CW; Baaijens FP; Bouten CV
    Tissue Eng Part A; 2008 Jan; 14(1):161-71. PubMed ID: 18333814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.
    Ostrovidov S; Ahadian S; Ramon-Azcon J; Hosseini V; Fujie T; Parthiban SP; Shiku H; Matsue T; Kaji H; Ramalingam M; Bae H; Khademhosseini A
    J Tissue Eng Regen Med; 2017 Feb; 11(2):582-595. PubMed ID: 25393357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale.
    Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N
    PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation.
    Li G; Peng H; Corsi K; Usas A; Olshanski A; Huard J
    J Bone Miner Res; 2005 Sep; 20(9):1611-23. PubMed ID: 16059633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling in vivo skeletal muscle ageing in vitro using three-dimensional bioengineered constructs.
    Sharples AP; Player DJ; Martin NR; Mudera V; Stewart CE; Lewis MP
    Aging Cell; 2012 Dec; 11(6):986-95. PubMed ID: 22882433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.
    Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.