These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31468966)

  • 1. Water Plays a Cocatalytic Role in Epoxide Ring Opening Reaction in Aspartate Proteases: A QM/MM Study.
    Ahsan M; Senapati S
    J Phys Chem B; 2019 Sep; 123(38):7955-7964. PubMed ID: 31468966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study on the mechanism of a ring-opening reaction of oxirane by the active-site aspartic dyad of HIV-1 protease.
    Kóna J
    Org Biomol Chem; 2008 Jan; 6(2):359-65. PubMed ID: 18175006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen bonding catalysis by water in epoxide ring opening reaction.
    Ahsan M; Pindi C; Senapati S
    J Mol Graph Model; 2021 Jun; 105():107894. PubMed ID: 33725641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of epoxide hydrolysis in microsolvated nucleotide bases adenine, guanine and cytosine: a DFT study.
    Vijayalakshmi KP; Mohan N; Ajitha MJ; Suresh CH
    Org Biomol Chem; 2011 Jul; 9(14):5115-22. PubMed ID: 21629892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic insights into the inhibition of cysteine proteases: first QM/MM calculations clarifying the stereoselectivity of epoxide-based inhibitors.
    Mladenovic M; Ansorg K; Fink RF; Thiel W; Schirmeister T; Engels B
    J Phys Chem B; 2008 Sep; 112(37):11798-808. PubMed ID: 18712902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum mechanics/molecular mechanics studies of the mechanism of cysteine protease inhibition by peptidyl-2,3-epoxyketones.
    Arafet K; Ferrer S; González FV; Moliner V
    Phys Chem Chem Phys; 2017 May; 19(20):12740-12748. PubMed ID: 28480929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of epoxide hydrolase by catalysis-induced formation of isoaspartate.
    van Loo B; Permentier HP; Kingma J; Baldascini H; Janssen DB
    FEBS Lett; 2008 May; 582(11):1581-6. PubMed ID: 18406355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism-based inactivation of cytochromes by furan epoxide: unraveling the molecular mechanism.
    Taxak N; Kalra S; Bharatam PV
    Inorg Chem; 2013 Dec; 52(23):13496-508. PubMed ID: 24236636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of different inhibitors with active-site aspartyl residues of HIV-1 protease and possible relevance to pepsin.
    Sayer JM; Louis JM
    Proteins; 2009 May; 75(3):556-68. PubMed ID: 18951411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational studies of darunavir into HIV-1 protease and DMPC bilayer: necessary conditions for effective binding and the role of the flaps.
    Leonis G; Czyżnikowska Ż; Megariotis G; Reis H; Papadopoulos MG
    J Chem Inf Model; 2012 Jun; 52(6):1542-58. PubMed ID: 22587384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states.
    Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG
    J Mol Graph Model; 2007 Sep; 26(2):401-8. PubMed ID: 17182266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Conformational changes in HIV-1 proteinase: effect of protonation of the active center on conformation of HIV-1 proteinase in water].
    Koval'skiĭ DB; Kanibolotskiĭ DS; Dubina VN; Korneliuk AI
    Ukr Biokhim Zh (1999); 2002; 74(6):135-8. PubMed ID: 12924029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study.
    Maphumulo SI; Halder AK; Govender T; Maseko S; Maguire GEM; Honarparvar B; Kruger HG
    Chem Biol Drug Des; 2018 Nov; 92(5):1899-1913. PubMed ID: 30003668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and Electrostatic Effects on the Reaction Catalyzed by HIV-1 Protease.
    Krzemińska A; Moliner V; Świderek K
    J Am Chem Soc; 2016 Dec; 138(50):16283-16298. PubMed ID: 27935692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of regioselectivity and chemoselectivity in fosfomycin resistance protein FosA from QM/MM calculations.
    Liao RZ; Thiel W
    J Phys Chem B; 2013 Feb; 117(5):1326-36. PubMed ID: 23320732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanolysis and azidolysis of epoxides by haloalcohol dehalogenase: theoretical study of the reaction mechanism and origins of regioselectivity.
    Hopmann KH; Himo F
    Biochemistry; 2008 Apr; 47(17):4973-82. PubMed ID: 18393443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insights on analogs of HIV PR inhibitors toward HTLV-1 PR through QM/MM interactions and molecular dynamics studies: comparative structure analysis of wild and mutant HTLV-1 PR.
    Selvaraj C; Singh P; Singh SK
    J Mol Recognit; 2014 Dec; 27(12):696-706. PubMed ID: 25319617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of the active site histidine for the activity of epoxide- or aziridine-based inhibitors of cysteine proteases.
    Mladenovic M; Schirmeister T; Thiel S; Thiel W; Engels B
    ChemMedChem; 2007 Jan; 2(1):120-8. PubMed ID: 17066390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.