BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31469044)

  • 21. Quantitative, Label-Free Evaluation of Tissue-Engineered Skeletal Muscle Through Multiphoton Microscopy.
    Syverud BC; Mycek MA; Larkin LM
    Tissue Eng Part C Methods; 2017 Oct; 23(10):616-626. PubMed ID: 28810820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury.
    Westman AM; Peirce SM; Christ GJ; Blemker SS
    PLoS Comput Biol; 2021 May; 17(5):e1008937. PubMed ID: 33970905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Passaging Primary Skeletal Muscle Cell Isolates on the Engineering of Skeletal Muscle.
    Wroblewski OM; Kennedy CS; Vega-Soto EE; Forester CE; Su EY; Nguyen MH; Cederna P; Larkin LM
    Tissue Eng Part A; 2024 Jun; ():. PubMed ID: 38874526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches.
    Langridge B; Griffin M; Butler PE
    J Mater Sci Mater Med; 2021 Jan; 32(1):15. PubMed ID: 33475855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vascularized and Innervated Skeletal Muscle Tissue Engineering.
    Gilbert-Honick J; Grayson W
    Adv Healthc Mater; 2020 Jan; 9(1):e1900626. PubMed ID: 31622051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered matrices for skeletal muscle satellite cell engraftment and function.
    Han WM; Jang YC; García AJ
    Matrix Biol; 2017 Jul; 60-61():96-109. PubMed ID: 27269735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Transgenic tdTomato Rat for Cell Migration and Tissue Engineering Applications.
    Syverud BC; Gumucio JP; Rodriguez BL; Wroblewski OM; Florida SE; Mendias CL; Larkin LM
    Tissue Eng Part C Methods; 2018 May; 24(5):263-271. PubMed ID: 29490563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stem Cells for Skeletal Muscle Tissue Engineering.
    Pantelic MN; Larkin LM
    Tissue Eng Part B Rev; 2018 Oct; 24(5):373-391. PubMed ID: 29652595
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Passipieri JA; Hu X; Mintz E; Dienes J; Baker HB; Wallace CH; Blemker SS; Christ GJ
    Tissue Eng Part A; 2019 Sep; 25(17-18):1272-1288. PubMed ID: 30882277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes.
    Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL
    Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle.
    Corona BT; Garg K; Ward CL; McDaniel JS; Walters TJ; Rathbone CR
    Am J Physiol Cell Physiol; 2013 Oct; 305(7):C761-75. PubMed ID: 23885064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss.
    Kiran S; Dwivedi P; Kumar V; Price RL; Singh UP
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of In Vivo Functional Testing of the Rat Tibialis Anterior for Evaluating Tissue Engineered Skeletal Muscle Repair.
    Mintz EL; Passipieri JA; Lovell DY; Christ GJ
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27768064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue.
    Mertens JP; Sugg KB; Lee JD; Larkin LM
    Regen Med; 2014 Jan; 9(1):89-100. PubMed ID: 24351009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induced Pluripotent Stem Cells for Tissue-Engineered Skeletal Muscles.
    Zhao S; Chen J; Wu L; Tao X; Yaqub N; Chang J
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Label-Free, High-Throughput Purification of Satellite Cells Using Microfluidic Inertial Separation.
    Syverud BC; Lin E; Nagrath S; Larkin LM
    Tissue Eng Part C Methods; 2018 Jan; 24(1):32-41. PubMed ID: 28946802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-Time Functional Assay of Volumetric Muscle Loss Injured Mouse Masseter Muscles via Nanomembrane Electronics.
    Kim H; Kwon YT; Zhu C; Wu F; Kwon S; Yeo WH; Choo HJ
    Adv Sci (Weinh); 2021 Sep; 8(17):e2101037. PubMed ID: 34218527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.
    Aurora A; Roe JL; Corona BT; Walters TJ
    Biomaterials; 2015 Oct; 67():393-407. PubMed ID: 26256250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in mass and performance in rabbit muscles after muscle damage with or without transplantation of primary satellite cells.
    Boubaker el Andalousi R; Daussin PA; Micallef JP; Roux C; Nougues J; Chammas M; Reyne Y; Bacou F
    Cell Transplant; 2002; 11(2):169-80. PubMed ID: 12099640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.