These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 31469088)
1. In vivo measurement of pre-operational spallation source workers: baseline body burden levels and detection limits of relevant gamma emitters using high-resolution gamma spectrometry. Rääf CL; Almén A; Johansson L; Stenström KE J Radiol Prot; 2020 Mar; 40(1):119-133. PubMed ID: 31469088 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry. Fathabadi N; Farahani MV; Amani S; Moradi M; Haddadi B Radiat Prot Dosimetry; 2011 Jun; 145(4):400-4. PubMed ID: 21148590 [TBL] [Abstract][Full Text] [Related]
3. A mobile bioassay laboratory for the assessment of internal doses based on in vivo and in vitro measurements. Dantas BM; Lucena EA; Dantas AL; Santos MS; Julião LQ; Melo DR; Sousa WO; Fernandes PC; Mesquita SA Health Phys; 2010 Oct; 99(4):449-52. PubMed ID: 20838084 [TBL] [Abstract][Full Text] [Related]
4. The interference of medical radionuclides with occupational in vivo gamma spectrometry. Kol R; Pelled O; Canfi A; Gilad Y; German U; Laichter Y; Lantsberg S; Fuksbrauner R; Gold B Health Phys; 2003 Jun; 84(6):756-63. PubMed ID: 12822585 [TBL] [Abstract][Full Text] [Related]
5. Tritium in urine from members of the general public and occupationally exposed workers in Lund, Sweden, prior to operation of the European Spallation Source. Pédehontaa-Hiaa G; Holstein H; Mattsson S; Rääf CL; Stenström KE J Environ Radioact; 2020 Mar; 213():106141. PubMed ID: 31983450 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo calculations for efficiency calibration of a whole-body monitor using BOMAB phantoms of different sizes. Bhati S; Patni HK; Ghare VP; Singh IS; Nadar MY Radiat Prot Dosimetry; 2012 Mar; 148(4):414-9. PubMed ID: 21531750 [TBL] [Abstract][Full Text] [Related]
7. RECOMMENDATIONS FOR MONITORING AND INTERNAL DOSIMETRY FOR NUCLEAR MEDICINE STAFF EXPOSED TO RADIOPHARMACEUTICALS 223Ra DICHLORIDE. Saurat D; Aupée O; Gontier E; Métivier D; Cazoulat A; Lecompte Y Radiat Prot Dosimetry; 2018 Dec; 182(3):299-309. PubMed ID: 30590840 [TBL] [Abstract][Full Text] [Related]
8. Measurement of radon, thoron and their daughters in the air of marble factories and resulting alpha-radiation doses to the lung of workers. Misdaq MA; Talbi A; Ouguidi J Environ Geochem Health; 2019 Oct; 41(5):2209-2222. PubMed ID: 30877629 [TBL] [Abstract][Full Text] [Related]
9. Detection of radon decay products in rainwater. Baker SI Health Phys; 1999 Nov; 77(5 Suppl):S71-6. PubMed ID: 10527152 [TBL] [Abstract][Full Text] [Related]
10. Design, construction and characterisation of a portable gamma-ray spectrometer for low-level natural occurring radioactive material ex-situ measurement. Bashir M; Newman RT; Jones P J Environ Radioact; 2020 Dec; 225():106415. PubMed ID: 33032005 [TBL] [Abstract][Full Text] [Related]
11. Additional contamination when radon is in excess. Martín Sánchez A; de la Torre Pérez J; Ruano Sánchez AB; Naranjo Correa FL Appl Radiat Isot; 2013 Nov; 81():212-5. PubMed ID: 23548693 [TBL] [Abstract][Full Text] [Related]
12. Calibration system for radon EEC measurements. Mostafa YA; Vasyanovich M; Zhukovsky M; Zaitceva N Radiat Prot Dosimetry; 2015 Jun; 164(4):587-90. PubMed ID: 25979737 [TBL] [Abstract][Full Text] [Related]
13. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES. Uzun SK; Demiröz I Radiat Prot Dosimetry; 2016 Sep; 170(1-4):331-5. PubMed ID: 26424134 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous measurements of indoor radon, radon-thoron progeny and high-resolution gamma spectrometry in Greek dwellings. Clouvas A; Xanthos S; Antonopoulos-Domis M Radiat Prot Dosimetry; 2006; 118(4):482-90. PubMed ID: 16410290 [TBL] [Abstract][Full Text] [Related]
15. Miners' exposure to radon and its decay products in some Iranian non-uranium underground mines. Fathabadi N; Ghiassi-Nejad M; Haddadi B; Moradi M Radiat Prot Dosimetry; 2006; 118(1):111-6. PubMed ID: 16081493 [TBL] [Abstract][Full Text] [Related]
16. INTERCOMPARISON EXPERIMENT AND UNCERTAINTY ANALYSIS OF THREE MEASUREMENT METHODS FOR RADON PROGENY AT NIM. Wang Y; Zhang L; Yang Z; Guo Q; Liang J Radiat Prot Dosimetry; 2019 Oct; 184(3-4):413-417. PubMed ID: 31038701 [TBL] [Abstract][Full Text] [Related]
17. Contribution of atmospherical radon to in-situ scintillation gamma spectrometry data. Klusoň J; Thinová L Appl Radiat Isot; 2011 Aug; 69(8):1143-5. PubMed ID: 21129988 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of in vivo and in vitro dose detection limits for different radionuclides and measurement techniques. Bitar A; Maghrabi M; Doubal AW Appl Radiat Isot; 2016 Jul; 113():5-9. PubMed ID: 27108068 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers. Boice JD; Leggett RW; Ellis ED; Wallace PW; Mumma M; Cohen SS; Brill AB; Chadda B; Boecker BB; Yoder RC; Eckerman KF Health Phys; 2006 May; 90(5):409-30. PubMed ID: 16607174 [TBL] [Abstract][Full Text] [Related]
20. Natural gamma-ray spectrometry as a tool for radiation dose and radon hazard modelling. Verdoya M; Chiozzi P; De Felice P; Pasquale V; Bochiolo M; Genovesi I Appl Radiat Isot; 2009 May; 67(5):964-8. PubMed ID: 19249218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]