These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31469209)

  • 41. Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries.
    Su D; Zhang J; Dou S; Wang G
    Chem Commun (Camb); 2015 Nov; 51(89):16092-5. PubMed ID: 26389862
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.
    Yang Y; Jin S; Zhang Z; Du Z; Liu H; Yang J; Xu H; Ji H
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14180-14186. PubMed ID: 28387517
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co
    Wang L; Yuan YF; Zhang XT; Chen Q; Guo SY
    Nanotechnology; 2019 Aug; 30(35):355401. PubMed ID: 31067517
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties.
    Shen L; Uchaker E; Yuan C; Nie P; Zhang M; Zhang X; Cao G
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2985-92. PubMed ID: 22630038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 2D FeP Nanoframe Superlattices via Space-Confined Topochemical Transformation.
    Deng Y; Xi X; Xia Y; Cao Y; Xue S; Wan S; Dong A; Yang D
    Adv Mater; 2022 Mar; 34(10):e2109145. PubMed ID: 34982834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties.
    Jiao Y; Han D; Ding Y; Zhang X; Guo G; Hu J; Yang D; Dong A
    Nat Commun; 2015 Mar; 6():6420. PubMed ID: 25739732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superlattices based on van der Waals 2D materials.
    Ryu YK; Frisenda R; Castellanos-Gomez A
    Chem Commun (Camb); 2019 Sep; 55(77):11498-11510. PubMed ID: 31483427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-heteroatom-doped dual carbon-confined Fe
    Tao X; Li Y; Wang HG; Lv X; Li Y; Xu D; Jiang Y; Meng Y
    J Colloid Interface Sci; 2020 Apr; 565():494-502. PubMed ID: 31982716
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unusual Improvement of Pseudocapacitance of Nanocomposite Electrodes: Three-Dimensional Amorphous Carbon Frameworks Triggered by TiO
    Lu H; Yang C; Bao H; Wang L; Li C; Wang H
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48039-48053. PubMed ID: 31791127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries.
    Wang Y; Tian W; Wang L; Zhang H; Liu J; Peng T; Pan L; Wang X; Wu M
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5577-5585. PubMed ID: 29346719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hollow K0.27MnO2 Nanospheres as Cathode for High-Performance Aqueous Sodium Ion Batteries.
    Liu Y; Qiao Y; Lou X; Zhang X; Zhang W; Huang Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14564-71. PubMed ID: 27229291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metallic-State SnS
    Shi X; Chen SL; Fan HN; Chen XH; Yuan D; Tang Q; Hu A; Luo WB; Liu HK
    ChemSusChem; 2019 Sep; 12(17):4046-4053. PubMed ID: 31257701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.
    Walravens W; De Roo J; Drijvers E; Ten Brinck S; Solano E; Dendooven J; Detavernier C; Infante I; Hens Z
    ACS Nano; 2016 Jul; 10(7):6861-70. PubMed ID: 27383262
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Uniform Ordered Two-Dimensional Mesoporous TiO
    Lan K; Liu Y; Zhang W; Liu Y; Elzatahry A; Wang R; Xia Y; Al-Dhayan D; Zheng N; Zhao D
    J Am Chem Soc; 2018 Mar; 140(11):4135-4143. PubMed ID: 29505721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multichannel Porous TiO
    Wu Y; Jiang Y; Shi J; Gu L; Yu Y
    Small; 2017 Jun; 13(22):. PubMed ID: 28418215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ formation of carbon encapsulated nanosheet-assembled MoSe
    Wu L; Tan P; Liu Y; Shang Y; Liu W; Xiong X; Pan J
    J Colloid Interface Sci; 2017 Apr; 491():279-285. PubMed ID: 28049052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries.
    Zhao C; Kong J; Yao X; Tang X; Dong Y; Phua SL; Lu X
    ACS Appl Mater Interfaces; 2014 May; 6(9):6392-8. PubMed ID: 24701987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mesoporous Graphitic Carbon-Encapsulated Fe
    Hou T; Sun X; Xie D; Wang M; Fan A; Chen Y; Cai S; Zheng C; Hu W
    Chemistry; 2018 Oct; 24(55):14786-14793. PubMed ID: 30047170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.