BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31469268)

  • 1. Reversible Photocontrolled Nanopore Assembly.
    Mutter NL; Volarić J; Szymanski W; Feringa BL; Maglia G
    J Am Chem Soc; 2019 Sep; 141(36):14356-14363. PubMed ID: 31469268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Fragaceatoxin C (FraC) Nanopores.
    Mutter NL; Huang G; van der Heide NJ; Lucas FLR; Galenkamp NS; Maglia G; Wloka C
    Methods Mol Biol; 2021; 2186():3-10. PubMed ID: 32918725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-Helical Fragaceatoxin C Nanopore Engineered for Double-Stranded and Single-Stranded Nucleic Acid Analysis.
    Wloka C; Mutter NL; Soskine M; Maglia G
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12494-8. PubMed ID: 27608188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores.
    Huang G; Willems K; Soskine M; Wloka C; Maglia G
    Nat Commun; 2017 Oct; 8(1):935. PubMed ID: 29038539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution.
    Huang G; Voet A; Maglia G
    Nat Commun; 2019 Feb; 10(1):835. PubMed ID: 30783102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Manipulation of the Internal Hydrophobicity of FraC Nanopores Augments Peptide Capture and Recognition.
    Lucas FLR; Sarthak K; Lenting EM; Coltan D; van der Heide NJ; Versloot RCA; Aksimentiev A; Maglia G
    ACS Nano; 2021 Jun; 15(6):9600-9613. PubMed ID: 34060809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore.
    Restrepo-Pérez L; Huang G; Bohländer PR; Worp N; Eelkema R; Maglia G; Joo C; Dekker C
    ACS Nano; 2019 Dec; 13(12):13668-13676. PubMed ID: 31536327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid.
    Tanaka K; Caaveiro JM; Morante K; González-Mañas JM; Tsumoto K
    Nat Commun; 2015 Feb; 6():6337. PubMed ID: 25716479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haemolytic actinoporins interact with carbohydrates using their lipid-binding module.
    Tanaka K; Caaveiro JMM; Morante K; Tsumoto K
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoswitchable Binary Nanopore Conductance and Selective Electronic Detection of Single Biomolecules under Wavelength and Voltage Polarity Control.
    Hagan JT; Gonzalez A; Shi Y; Han GGD; Dwyer JR
    ACS Nano; 2022 Apr; 16(4):5537-5544. PubMed ID: 35286058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional Transformation of a Metamorphic Protein between the Water-Soluble and Transmembrane Native States.
    Tanaka K; Caaveiro JM; Tsumoto K
    Biochemistry; 2015 Nov; 54(46):6863-6. PubMed ID: 26544760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein identification by nanopore peptide profiling.
    Lucas FLR; Versloot RCA; Yakovlieva L; Walvoort MTC; Maglia G
    Nat Commun; 2021 Oct; 12(1):5795. PubMed ID: 34608150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes.
    Offenbartl-Stiegert D; Rottensteiner A; Dorey A; Howorka S
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202210886. PubMed ID: 36318092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state nanopore fabrication by automated controlled breakdown.
    Waugh M; Briggs K; Gunn D; Gibeault M; King S; Ingram Q; Jimenez AM; Berryman S; Lomovtsev D; Andrzejewski L; Tabard-Cossa V
    Nat Protoc; 2020 Jan; 15(1):122-143. PubMed ID: 31836867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pores of the toxin FraC assemble into 2D hexagonal clusters in both crystal structures and model membranes.
    Mechaly AE; Bellomio A; Morante K; Agirre J; Gil-Cartón D; Valle M; González-Mañas JM; Guérin DM
    J Struct Biol; 2012 Nov; 180(2):312-7. PubMed ID: 22728830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disrupting a key hydrophobic pair in the oligomerization interface of the actinoporins impairs their pore-forming activity.
    Mesa-Galloso H; Delgado-Magnero KH; Cabezas S; López-Castilla A; Hernández-González JE; Pedrera L; Alvarez C; Peter Tieleman D; García-Sáez AJ; Lanio ME; Ros U; Valiente PA
    Protein Sci; 2017 Mar; 26(3):550-565. PubMed ID: 28000294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.