These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31469282)

  • 1. Self-Cleaning Mechanism: Why Nanotexture and Hydrophobicity Matter.
    Heckenthaler T; Sadhujan S; Morgenstern Y; Natarajan P; Bashouti M; Kaufman Y
    Langmuir; 2019 Dec; 35(48):15526-15534. PubMed ID: 31469282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When and how self-cleaning of superhydrophobic surfaces works.
    Geyer F; D'Acunzi M; Sharifi-Aghili A; Saal A; Gao N; Kaltbeitzel A; Sloot TF; Berger R; Butt HJ; Vollmer D
    Sci Adv; 2020 Jan; 6(3):eaaw9727. PubMed ID: 32010764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid bridges between particles and the hydrophobic or hydrophilic surfaces of solar photovoltaic glass.
    Liu X; Zhao X; Lu L; Li J
    Sci Total Environ; 2022 May; 822():153552. PubMed ID: 35114234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate.
    Wisdom KM; Watson JA; Qu X; Liu F; Watson GS; Chen CH
    Proc Natl Acad Sci U S A; 2013 May; 110(20):7992-7. PubMed ID: 23630277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Stability of PDMS-Based Micro/Nanotextured Flexible Superhydrophobic Surfaces under External Loading.
    Wang N; Wang Q; Xu S; Zheng X
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48583-48593. PubMed ID: 31790573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-cleaning of Surfaces: the Role of Surface Wettability and Dust Types.
    Quan YY; Zhang LZ; Qi RH; Cai RR
    Sci Rep; 2016 Dec; 6():38239. PubMed ID: 27917900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.
    Jung YC; Bhushan B
    ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces.
    Hansson PM; Claesson PM; Swerin A; Briscoe WH; Schoelkopf J; Gane PA; Thormann E
    Phys Chem Chem Phys; 2013 Nov; 15(41):17893-902. PubMed ID: 24056733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.
    Jönsson-Niedziółka M; Lapierre F; Coffinier Y; Parry SJ; Zoueshtiagh F; Foat T; Thomy V; Boukherroub R
    Lab Chip; 2011 Feb; 11(3):490-6. PubMed ID: 21103534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in Studies of Surface Nanotextures and Coatings with Nanomaterials on Glass for Anti-Dust Functionality.
    Wang L; Liu M; Wu Y; Zheng H
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced condensation on lubricant-impregnated nanotextured surfaces.
    Anand S; Paxson AT; Dhiman R; Smith JD; Varanasi KK
    ACS Nano; 2012 Nov; 6(11):10122-9. PubMed ID: 23030619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observing Real-Time Adhesion of Microparticles on Glass Surfaces.
    Srikrishnarka P; Kumaran D; Kini AR; Kumar V; Nagar A; Islam MR; Nagarajan R; Pradeep T
    Langmuir; 2023 Dec; 39(48):17071-17079. PubMed ID: 37971209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lotus-like effect for metal filings recovery and particle removal on heated metal surfaces using Leidenfrost water droplets.
    Tan CL; Sapiha K; Leong YF; Choi S; Anariba F; Thio BJ
    Soft Matter; 2015 Jul; 11(27):5400-7. PubMed ID: 26053932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbonated water droplets on a dusty hydrophobic surface.
    Abubakar AA; Yilbas BS; Al-Qahtani H; Hassan G; Yakubu M; Hatab SB
    Soft Matter; 2020 Aug; 16(30):7144-7155. PubMed ID: 32666999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why is it difficult to wash aphids off from superhydrophobic kale?
    Damle VG; Linder R; Sun X; Kemme N; Majure LC; Rykaczewski K
    Bioinspir Biomim; 2016 Oct; 11(5):054001. PubMed ID: 27694711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of surface properties of soil particles and model materials with contrasting hydrophobicity using atomic force microscopy.
    Cheng S; Bryant R; Doerr SH; Wright CI; Williams PR
    Environ Sci Technol; 2009 Sep; 43(17):6500-6. PubMed ID: 19764208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.