These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31469282)

  • 21. Water droplet behavior in between hydrophilic and hydrophobic surfaces and dust mitigation.
    Yilbas BS; Abubakar AA; Adukwu JE; Hassan G; Al-Qahtani H; Al-Sharafi A; Unal M; Alzaydi A
    RSC Adv; 2022 Oct; 12(44):28788-28799. PubMed ID: 36320528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces.
    Lv C; Zhang X; Niu F; He F; Hao P
    Sci Rep; 2017 Feb; 7():42752. PubMed ID: 28202939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control.
    Shirtcliffe NJ; McHale G; Newton MI
    Langmuir; 2009 Dec; 25(24):14121-8. PubMed ID: 20560556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contaminant Removal from Nature's Self-Cleaning Surfaces.
    Perumanath S; Pillai R; Borg MK
    Nano Lett; 2023 May; 23(10):4234-4241. PubMed ID: 37154913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Why a lotus-like superhydrophobic surface is self-cleaning? An explanation from surface force measurements and analysis.
    Yu M; Chen S; Zhang B; Qiu D; Cui S
    Langmuir; 2014 Nov; 30(45):13615-21. PubMed ID: 25335800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.
    Lv C; Hao P; Zhang X; He F
    ACS Nano; 2015 Dec; 9(12):12311-9. PubMed ID: 26565420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Large-Area Antidust Surfaces by Harnessing Interparticle Forces.
    Lee SS; Micklow L; Tunell A; Chien KC; Mohanty S; Cates N; Furst S; Chang CH
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13678-13688. PubMed ID: 36811627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions.
    Bengaluru Subramanyam S; Kondrashov V; Rühe J; Varanasi KK
    ACS Appl Mater Interfaces; 2016 May; 8(20):12583-7. PubMed ID: 27150450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extending the Lotus Effect: Repairing Superhydrophobic Surfaces after Contamination or Damage by CHic Chemistry.
    Hönes R; Rühe J
    Langmuir; 2018 Jul; 34(29):8661-8669. PubMed ID: 29944377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How a water drop removes a particle from a hydrophobic surface.
    Naga A; Kaltbeitzel A; Wong WSY; Hauer L; Butt HJ; Vollmer D
    Soft Matter; 2021 Feb; 17(7):1746-1755. PubMed ID: 33400749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction Forces between Water Droplets and Solid Surfaces across Air Films.
    Gao Y; Jung S; Pan L
    ACS Omega; 2019 Oct; 4(15):16674-16682. PubMed ID: 31616850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchically sculptured plant surfaces and superhydrophobicity.
    Koch K; Bohn HF; Barthlott W
    Langmuir; 2009 Dec; 25(24):14116-20. PubMed ID: 19634871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.
    Lee J; Fearing RS
    Langmuir; 2012 Oct; 28(43):15372-7. PubMed ID: 23072291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning.
    Wong WSY; Corrales TP; Naga A; Baumli P; Kaltbeitzel A; Kappl M; Papadopoulos P; Vollmer D; Butt HJ
    ACS Nano; 2020 Apr; 14(4):3836-3846. PubMed ID: 32096971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust and Superhydrophobic Surface Modification by a "Paint + Adhesive" Method: Applications in Self-Cleaning after Oil Contamination and Oil-Water Separation.
    Chen B; Qiu J; Sakai E; Kanazawa N; Liang R; Feng H
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17659-67. PubMed ID: 27286474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.