These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 31469359)
1. Beyond clinical changes: Rehabilitation-induced neuroplasticity in MS. Prosperini L; Di Filippo M Mult Scler; 2019 Sep; 25(10):1348-1362. PubMed ID: 31469359 [TBL] [Abstract][Full Text] [Related]
2. Functional training is a senseless strategy in MS cognitive rehabilitation: Strategy training is the only useful approach - NO. Hulst HE; Langdon DW Mult Scler; 2017 Jun; 23(7):930-932. PubMed ID: 28332909 [No Abstract] [Full Text] [Related]
3. Functional training is a senseless strategy in MS cognitive rehabilitation: Strategy training is the only useful approach - YES. Leavitt VM Mult Scler; 2017 Jun; 23(7):928-929. PubMed ID: 28332907 [No Abstract] [Full Text] [Related]
4. Beyond rehabilitation in MS: Insights from non-invasive brain stimulation. Leocani L; Chieffo R; Gentile A; Centonze D Mult Scler; 2019 Sep; 25(10):1363-1371. PubMed ID: 31469356 [TBL] [Abstract][Full Text] [Related]
5. Systematic Review on Exercise Training as a Neuroplasticity-Inducing Behavior in Multiple Sclerosis. Sandroff BM; Jones CD; Baird JF; Motl RW Neurorehabil Neural Repair; 2020 Jul; 34(7):575-588. PubMed ID: 32452269 [No Abstract] [Full Text] [Related]
6. Advanced neuroimaging techniques to explore the effects of motor and cognitive rehabilitation in multiple sclerosis. Rocca MA; Romanò F; Tedone N; Filippi M J Neurol; 2024 Jul; 271(7):3806-3848. PubMed ID: 38691168 [TBL] [Abstract][Full Text] [Related]
7. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study. Tavazzi E; Bergsland N; Cattaneo D; Gervasoni E; Laganà MM; Dipasquale O; Grosso C; Saibene FL; Baglio F; Rovaris M J Neurol; 2018 Jun; 265(6):1393-1401. PubMed ID: 29627940 [TBL] [Abstract][Full Text] [Related]
8. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis. Prosperini L; Piattella MC; Giannì C; Pantano P Neural Plast; 2015; 2015():481574. PubMed ID: 26064692 [TBL] [Abstract][Full Text] [Related]
9. Effects of an individual 12-week community-located "start-to-run" program on physical capacity, walking, fatigue, cognitive function, brain volumes, and structures in persons with multiple sclerosis. Feys P; Moumdjian L; Van Halewyck F; Wens I; Eijnde BO; Van Wijmeersch B; Popescu V; Van Asch P Mult Scler; 2019 Jan; 25(1):92-103. PubMed ID: 29113572 [TBL] [Abstract][Full Text] [Related]
10. Predictive value of electroencephalography connectivity measures for motor training outcome in multiple sclerosis: an observational longitudinal study. Tramonti C; Imperatori LS; Fanciullacci C; Lamola G; Lettieri G; Bernardi G; Cecchetti L; Ricciardi E; Chisari C Eur J Phys Rehabil Med; 2019 Dec; 55(6):743-753. PubMed ID: 30370753 [TBL] [Abstract][Full Text] [Related]
11. Exercise as a Countermeasure to Declining Central Nervous System Function in Multiple Sclerosis. Motl RW; Sandroff BM Clin Ther; 2018 Jan; 40(1):16-25. PubMed ID: 29287750 [TBL] [Abstract][Full Text] [Related]
12. Structural and Functional MRI Techniques in Multiple Sclerosis Related Cognitive Dysfunction. Iancheva D; Trenova A; Mantarova S; Terziyski K Folia Med (Plovdiv); 2018 Dec; 60(4):505-511. PubMed ID: 31188776 [TBL] [Abstract][Full Text] [Related]
13. Impact of physical activity, physical fitness and exercises on cognitive impairment in patients with multiple sclerosis: A review of evidence and underlying mechanisms. Lenne B; Donze C; Massot C; Degraeve B Rev Neurol (Paris); 2024 Sep; 180(7):583-598. PubMed ID: 37798163 [TBL] [Abstract][Full Text] [Related]
14. Functional MRI in investigating cognitive impairment in multiple sclerosis. Rocca MA; De Meo E; Filippi M Acta Neurol Scand; 2016 Sep; 134 Suppl 200():39-46. PubMed ID: 27580905 [TBL] [Abstract][Full Text] [Related]
15. Motor-cognitive approach and aerobic training: a synergism for rehabilitative intervention in Parkinson's disease. Ferrazzoli D; Ortelli P; Cucca A; Bakdounes L; Canesi M; Volpe D Neurodegener Dis Manag; 2020 Feb; 10(1):41-55. PubMed ID: 32039653 [TBL] [Abstract][Full Text] [Related]
16. Brain mapping in multiple sclerosis: Lessons learned about the human brain. Filippi M; Preziosa P; Rocca MA Neuroimage; 2019 Apr; 190():32-45. PubMed ID: 28917696 [TBL] [Abstract][Full Text] [Related]
17. Neuroplasticity-Based Technologies and Interventions for Restoring Motor Functions in Multiple Sclerosis. Straudi S; Basaglia N Adv Exp Med Biol; 2017; 958():171-185. PubMed ID: 28093714 [TBL] [Abstract][Full Text] [Related]
18. Beyond therapists: Technology-aided physical MS rehabilitation delivery. Feys P; Straudi S Mult Scler; 2019 Sep; 25(10):1387-1393. PubMed ID: 31469352 [TBL] [Abstract][Full Text] [Related]
19. Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Di Filippo M; de Iure A; Durante V; Gaetani L; Mancini A; Sarchielli P; Calabresi P Brain Res; 2015 Sep; 1621():205-13. PubMed ID: 25498984 [TBL] [Abstract][Full Text] [Related]
20. Plasticity of the motor system in multiple sclerosis. Zeller D; Classen J Neuroscience; 2014 Dec; 283():222-30. PubMed ID: 24881573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]