These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31469368)

  • 21. Salinity-dependent copper accumulation in the guppy Poecilia vivipara is associated with CTR1 and ATP7B transcriptional regulation.
    da Silva ES; Abril SI; Zanette J; Bianchini A
    Aquat Toxicol; 2014 Jul; 152():300-7. PubMed ID: 24813262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation.
    Davis CI; Gu X; Kiefer RM; Ralle M; Gade TP; Brady DC
    Metallomics; 2020 Dec; 12(12):1995-2008. PubMed ID: 33146201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organ-specific regulation of ATP7A abundance is coordinated with systemic copper homeostasis.
    Chun H; Catterton T; Kim H; Lee J; Kim BE
    Sci Rep; 2017 Sep; 7(1):12001. PubMed ID: 28931909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional and molecular responses of suckling rat pups and human intestinal Caco-2 cells to copper treatment.
    Bauerly KA; Kelleher SL; Lönnerdal B
    J Nutr Biochem; 2004 Mar; 15(3):155-62. PubMed ID: 15023397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration.
    Blockhuys S; Zhang X; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2014-2019. PubMed ID: 31932435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase.
    Schmidt K; Ralle M; Schaffer T; Jayakanthan S; Bari B; Muchenditsi A; Lutsenko S
    J Biol Chem; 2018 Dec; 293(52):20085-20098. PubMed ID: 30341172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of copper chaperone for superoxide dismutase 1 and metallothionein in copper homeostasis.
    Miyayama T; Ishizuka Y; Iijima T; Hiraoka D; Ogra Y
    Metallomics; 2011 Jul; 3(7):693-701. PubMed ID: 21409224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic and cell-specific transport networks for intracellular copper ions.
    Lutsenko S
    J Cell Sci; 2021 Nov; 134(21):. PubMed ID: 34734631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical basis of regulation of human copper-transporting ATPases.
    Lutsenko S; LeShane ES; Shinde U
    Arch Biochem Biophys; 2007 Jul; 463(2):134-48. PubMed ID: 17562324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence of common cadmium and copper uptake routes in zebrafish Danio rerio.
    Komjarova I; Bury NR
    Environ Sci Technol; 2014 Nov; 48(21):12946-51. PubMed ID: 25289693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-silico analysis of novel p.(Gly14Ser) variant of ATOX1 gene: plausible role in modulating ATOX1-ATP7B interaction.
    Kumari N; Kumar A; Pal A; Thapa BR; Modi M; Prasad R
    Mol Biol Rep; 2019 Jun; 46(3):3307-3313. PubMed ID: 30980273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trafficking mechanisms of P-type ATPase copper transporters.
    Hartwig C; Zlatic SA; Wallin M; Vrailas-Mortimer A; Fahrni CJ; Faundez V
    Curr Opin Cell Biol; 2019 Aug; 59():24-33. PubMed ID: 30928671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The molecular mechanisms of copper metabolism and its roles in human diseases.
    Chen J; Jiang Y; Shi H; Peng Y; Fan X; Li C
    Pflugers Arch; 2020 Oct; 472(10):1415-1429. PubMed ID: 32506322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P
    Maghool S; Fontaine S; Roberts BR; Kwan AH; Maher MJ
    Sci Rep; 2020 Mar; 10(1):4157. PubMed ID: 32139726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the loss of Atox1 on the cellular pharmacology of cisplatin.
    Safaei R; Maktabi MH; Blair BG; Larson CA; Howell SB
    J Inorg Biochem; 2009 Mar; 103(3):333-41. PubMed ID: 19124158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of HIF-1 signaling ameliorates liver steatosis in zebrafish atp7b deficiency (Wilson's disease) models.
    Mi X; Li Z; Yan J; Li Y; Zheng J; Zhuang Z; Yang W; Gong L; Shi J
    Biochim Biophys Acta Mol Basis Dis; 2020 Oct; 1866(10):165842. PubMed ID: 32446740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-transcriptome sequencing (RNA-seq) study of the ZFL zebrafish liver cell line after acute exposure to Cd
    Kwok ML; Meng Q; Hu XL; Chung CT; Chan KM
    Aquat Toxicol; 2020 Nov; 228():105628. PubMed ID: 32971353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing functional roles of Wilson disease protein (ATP7B) copper-binding domains in yeast.
    Ponnandai Shanmugavel K; Petranovic D; Wittung-Stafshede P
    Metallomics; 2017 Jul; 9(7):981-988. PubMed ID: 28653724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caveolin-1 stabilizes ATP7A, a copper transporter for extracellular SOD, in vascular tissue to maintain endothelial function.
    Sudhahar V; Okur MN; O'Bryan JP; Minshall RD; Fulton D; Ushio-Fukai M; Fukai T
    Am J Physiol Cell Physiol; 2020 Nov; 319(5):C933-C944. PubMed ID: 32936699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of eight copper (Cu) uptake related genes from yellow catfish Pelteobagrus fulvidraco, and their tissue expression and transcriptional responses to dietborne Cu exposure.
    Cheng J; Luo Z; Chen GH; Wei CC; Zhuo MQ
    J Trace Elem Med Biol; 2017 Dec; 44():256-265. PubMed ID: 28965584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.