These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3146948)

  • 1. Effect of phenolic monomers on the growth and beta-glucosidase activity of Bacteroides ruminicola and on the carboxymethylcellulase, beta-glucosidase, and xylanase activities of Bacteroides succinogenes.
    Martin SA; Akin DE
    Appl Environ Microbiol; 1988 Dec; 54(12):3019-22. PubMed ID: 3146948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulolytic activity of the rumen bacterium Bacteroides succinogenes.
    Groleau D; Forsberg CW
    Can J Microbiol; 1981 May; 27(5):517-30. PubMed ID: 6788355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a modified Bacteroides-Prevotella shuttle vector to transfer a reconstructed beta-1,4-D-endoglucanase gene into Bacteroides uniformis and Prevotella ruminicola B(1)4.
    Gardner RG; Russell JB; Wilson DB; Wang GR; Shoemaker NB
    Appl Environ Microbiol; 1996 Jan; 62(1):196-202. PubMed ID: 8572695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of xylanase genes and enzymes among strains of Prevotella (Bacteroides) ruminicola from the rumen.
    Avgustin G; Flint HJ; Whitehead TR
    FEMS Microbiol Lett; 1992 Dec; 78(2-3):137-43. PubMed ID: 1490595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a cloned cellulase/xylanase gene from Prevotella ruminicola in Bacteroides vulgatus, Bacteroides uniformis and Prevotella ruminicola.
    Daniel AS; Martin J; Vanat I; Whitehead TR; Flint HJ
    J Appl Bacteriol; 1995 Oct; 79(4):417-24. PubMed ID: 7592134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phenolic monomers on the enzymes activities and volatile fatty acids production of Neocallimastix frontalis B9.
    Zuhainis Saad W; Abdullah N; Alimon AR; Yin Wan H
    Anaerobe; 2008 Apr; 14(2):118-22. PubMed ID: 18083606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of the endo-beta-1,4-glucanase and beta-1,4-glucosidase from Bacteroides succinogenes.
    Forsberg CW; Groleau D
    Can J Microbiol; 1982 Jan; 28(1):144-8. PubMed ID: 6802473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of the gene and amino acid sequence of the Prevotella (Bacteroides) ruminicola 23 xylanase reveals unexpected homology with endoglucanases from other genera of bacteria.
    Whitehead TR
    Curr Microbiol; 1993 Jul; 27(1):27-33. PubMed ID: 7763664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction of the Bacteroides ruminicola xylanase gene into the Bacteroides thetaiotaomicron chromosome for production of xylanase activity.
    Whitehead TR; Cotta MA; Hespell RB
    Appl Environ Microbiol; 1991 Jan; 57(1):277-82. PubMed ID: 2036016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteroides xylanolyticus sp. nov., a xylanolytic bacterium from methane producing cattle manure.
    Scholten-Koerselman I; Houwaard F; Janssen P; Zehnder AJ
    Antonie Van Leeuwenhoek; 1986; 52(6):543-54. PubMed ID: 3813526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression of the Bacteroides ruminicola xylanase gene in Bacteroides fragilis and Bacteroides uniformis.
    Whitehead TR; Hespell RB
    FEMS Microbiol Lett; 1990 Jan; 54(1-3):61-5. PubMed ID: 2323546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of a xylanase gene from Bacteroides succinogenes and its expression in Escherichia coli.
    Sipat A; Taylor KA; Lo RY; Forsberg CW; Krell PJ
    Appl Environ Microbiol; 1987 Mar; 53(3):477-81. PubMed ID: 3034151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.
    Hespell RB; Wolf R; Bothast RJ
    Appl Environ Microbiol; 1987 Dec; 53(12):2849-53. PubMed ID: 3124741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23.
    Whitehead TR; Hespell RB
    Appl Environ Microbiol; 1989 Apr; 55(4):893-6. PubMed ID: 2658806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic characterization of polysaccharidases produced by four Prevotella type strains.
    Matsui H; Ogata K; Tajima K; Nakamura M; Nagamine T; Aminov RI; Benno Y
    Curr Microbiol; 2000 Jul; 41(1):45-9. PubMed ID: 10919398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of phenolic monomers on biomass and hydrolytic enzyme activities of an anaerobic fungus isolated from wild nil gai (Baselophus tragocamelus).
    Paul SS; Kamra DN; Sastry VR; Sahu NP; Kumar A
    Lett Appl Microbiol; 2003; 36(6):377-81. PubMed ID: 12753245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance of feed enzymes to proteolytic inactivation by rumen microorganisms and gastrointestinal proteases.
    Morgavi DP; Beauchemin KA; Nsereko VL; Rode LM; McAllister TA; Iwaasa AD; Wang Y; Yang WZ
    J Anim Sci; 2001 Jun; 79(6):1621-30. PubMed ID: 11424701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymic release of reducing sugars from oat hulls by cellulase, as influenced by Aspergillus ferulic acid esterase and trichoderma xylanase.
    Yu P; McKinnon JJ; Maenz DD; Olkowski AA; Racz VJ; Christensen DA
    J Agric Food Chem; 2003 Jan; 51(1):218-23. PubMed ID: 12502411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of cellulose in Schizophyllum commune: thiocellobiose as a new inducer.
    Rho D; Desrochers M; Jurasek L; Driguez H; Defaye J
    J Bacteriol; 1982 Jan; 149(1):47-53. PubMed ID: 6798027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulase and xylanase activities in higher basidiomycetes.
    Elisashvili VI; Khardziani TS; Tsiklauri ND; Kachlishvili ET
    Biochemistry (Mosc); 1999 Jun; 64(6):718-22. PubMed ID: 10395989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.