These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 3146980)
1. Protein-sequence studies on Rh-related polypeptides suggest the presence of at least two groups of proteins which associate in the human red-cell membrane. Avent ND; Ridgwell K; Mawby WJ; Tanner MJ; Anstee DJ; Kumpel B Biochem J; 1988 Dec; 256(3):1043-6. PubMed ID: 3146980 [TBL] [Abstract][Full Text] [Related]
2. cDNA cloning of a 30 kDa erythrocyte membrane protein associated with Rh (Rhesus)-blood-group-antigen expression. Avent ND; Ridgwell K; Tanner MJ; Anstee DJ Biochem J; 1990 Nov; 271(3):821-5. PubMed ID: 2123099 [TBL] [Abstract][Full Text] [Related]
3. Murine monoclonal antibody MB-2D10 recognizes Rh-related glycoproteins in the human red cell membrane. Mallinson G; Anstee DJ; Avent ND; Ridgwell K; Tanner MJ; Daniels GL; Tippett P; von dem Borne AE Transfusion; 1990; 30(3):222-5. PubMed ID: 2107609 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide sequences and three-dimensional modelling of the VH and VL domains of two human monoclonal antibodies specific for the D antigen of the human Rh-blood-group system. Hughes-Jones NC; Bye JM; Beale D; Coadwell J Biochem J; 1990 May; 268(1):135-40. PubMed ID: 2111699 [TBL] [Abstract][Full Text] [Related]
5. Monoclonal antibodies that recognize different membrane proteins that are deficient in Rhnull human erythrocytes. One group of antibodies reacts with a variety of cells and tissues whereas the other group is erythroid-specific. Avent N; Judson PA; Parsons SF; Mallinson G; Anstee DJ; Tanner MJ; Evans PR; Hodges E; Maciver AG; Holmes C Biochem J; 1988 Apr; 251(2):499-505. PubMed ID: 3135800 [TBL] [Abstract][Full Text] [Related]
6. The identification of specific Rhesus-polypeptide-blood-group-ABH-active-glycoprotein complexes in the human red-cell membrane. Moore S; Green C Biochem J; 1987 Jun; 244(3):735-41. PubMed ID: 2451503 [TBL] [Abstract][Full Text] [Related]
7. The abundance and organization of polypeptides associated with antigens of the Rh blood group system. Gardner B; Anstee DJ; Mawby WJ; Tanner MJ; von dem Borne AE Transfus Med; 1991 Jun; 1(2):77-85. PubMed ID: 9259831 [TBL] [Abstract][Full Text] [Related]
8. The human erythrocyte anion-transport protein. Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange. Brock CJ; Tanner MJ; Kempf C Biochem J; 1983 Sep; 213(3):577-86. PubMed ID: 6615451 [TBL] [Abstract][Full Text] [Related]
9. The amino acid sequence of the cytochrome c-554(547) from the chemolithotrophic bacterium Thiobacillus neapolitanus. Ambler RP; Meyer TE; Trudinger PA; Kamen MD Biochem J; 1985 May; 227(3):1009-13. PubMed ID: 2988504 [TBL] [Abstract][Full Text] [Related]
10. The amino acid sequence of the tryptic peptides from actinidin, a proteolytic enzyme from the fruit of Actinidia chinensis. Carne A; Moore CH Biochem J; 1978 Jul; 173(1):73-83. PubMed ID: 687380 [TBL] [Abstract][Full Text] [Related]
11. Type II intermediate-filament proteins from wool. The amino acid sequence of component 5 and comparison with component 7c. Sparrow LG; Robinson CP; Caine J; McMahon DT; Strike PM Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):291-7. PubMed ID: 1371668 [TBL] [Abstract][Full Text] [Related]
12. The amino acid sequence of component 7c, a type II intermediate-filament protein from wool. Sparrow LG; Robinson CP; McMahon DT; Rubira MR Biochem J; 1989 Aug; 261(3):1015-22. PubMed ID: 2803231 [TBL] [Abstract][Full Text] [Related]
13. Immunochemical characterization of rhesus proteins with antibodies raised against synthetic peptides. Hermand P; Mouro I; Huet M; Bloy C; Suyama K; Goldstein J; Cartron JP; Bailly P Blood; 1993 Jul; 82(2):669-76. PubMed ID: 8329720 [TBL] [Abstract][Full Text] [Related]
14. N-terminal amino acid sequence of wheat proteins that lack phenylalanine and histidine residues. Redman DG Biochem J; 1976 Apr; 155(1):193-5. PubMed ID: 938475 [TBL] [Abstract][Full Text] [Related]
15. The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. The tryptic peptides. Wootton JC; Taylor JG; Jackson AA; Chambers GK; Fincham JR Biochem J; 1975 Sep; 149(3):739-48. PubMed ID: 1000 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a structurally homologous Rh-like polypeptide in Rhnull erythrocytes. Connor J; Bar-Eli M; Gillum KD; Schroit AJ J Biol Chem; 1992 Dec; 267(36):26050-5. PubMed ID: 1464615 [TBL] [Abstract][Full Text] [Related]
17. Primary structure of a constituent polypeptide chain (AIII) of the giant haemoglobin from the deep-sea tube worm Lamellibrachia. A possible H2S-binding site. Suzuki T; Takagi T; Ohta S Biochem J; 1990 Feb; 266(1):221-5. PubMed ID: 2310374 [TBL] [Abstract][Full Text] [Related]
18. The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments. Dowling LM; Crewther WG; Inglis AS Biochem J; 1986 Jun; 236(3):695-703. PubMed ID: 2431679 [TBL] [Abstract][Full Text] [Related]
19. Prokaryote-eukaryote relationship and the amino acid sequence of plastocyanin from Anabaena variabilis. Aitken A Biochem J; 1975 Sep; 149(3):675-83. PubMed ID: 812489 [TBL] [Abstract][Full Text] [Related]
20. The amino acid sequence of cytochrome c from the locust, Schistocerca gregaria Forskal. Lyddiatt A; Boulter D Biochem J; 1977 May; 163(2):333-8. PubMed ID: 194585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]