These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31469855)

  • 21. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants.
    Peng FY; Hu Z; Yang RC
    BMC Genomics; 2016 Aug; 17():573. PubMed ID: 27503086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S).
    Becker G; Hengge-Aronis R
    Mol Microbiol; 2001 Mar; 39(5):1153-65. PubMed ID: 11251833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes.
    Liu X; Brutlag DL; Liu JS
    Pac Symp Biocomput; 2001; ():127-38. PubMed ID: 11262934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.
    Lu R; Mucaki EJ; Rogan PK
    Nucleic Acids Res; 2017 Mar; 45(5):e27. PubMed ID: 27899659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An advanced bioinformatics approach for analyzing RNA-seq data reveals sigma H-dependent regulation of competence genes in Listeria monocytogenes.
    Liu Y; Orsi RH; Boor KJ; Wiedmann M; Guariglia-Oropeza V
    BMC Genomics; 2016 Feb; 17():115. PubMed ID: 26880300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites.
    Nandi S; Ioshikhes I
    BMC Genomics; 2012 Aug; 13():416. PubMed ID: 22913572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between activating region 3 of the Escherichia coli cyclic AMP receptor protein and region 4 of the RNA polymerase sigma(70) subunit: application of suppression genetics.
    Rhodius VA; Busby SJ
    J Mol Biol; 2000 Jun; 299(2):311-24. PubMed ID: 10860740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BacPP: bacterial promoter prediction--a tool for accurate sigma-factor specific assignment in enterobacteria.
    de Avila E Silva S; Echeverrigaray S; Gerhardt GJ
    J Theor Biol; 2011 Oct; 287():92-9. PubMed ID: 21827769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites.
    Jajamovich GH; Wang X; Arkin AP; Samoilov MS
    Nucleic Acids Res; 2011 Nov; 39(21):e146. PubMed ID: 21948794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated analysis of motif activity and gene expression changes of transcription factors.
    Madsen JGS; Rauch A; Van Hauwaert EL; Schmidt SF; Winnefeld M; Mandrup S
    Genome Res; 2018 Feb; 28(2):243-255. PubMed ID: 29233921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient computation of motif discovery on Intel Many Integrated Core (MIC) Architecture.
    Peng S; Cheng M; Huang K; Cui Y; Zhang Z; Guo R; Zhang X; Yang S; Liao X; Lu Y; Zou Q; Shi B
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):282. PubMed ID: 30367570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient online transcription factor binding site adjustment by integrating transitive graph projection with MoRAine 2.0.
    Wittkop T; Rahmann S; Baumbach J
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GAME: detecting cis-regulatory elements using a genetic algorithm.
    Wei Z; Jensen ST
    Bioinformatics; 2006 Jul; 22(13):1577-84. PubMed ID: 16632495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of Escherichia coli RNA polymerase in transcriptional activation by activator protein PhoB.
    Kim SK; Makino K; Amemura M; Nakata A; Shinagawa H
    Mol Gen Genet; 1995 Jul; 248(1):1-8. PubMed ID: 7651320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SiTaR: a novel tool for transcription factor binding site prediction.
    Fazius E; Shelest V; Shelest E
    Bioinformatics; 2011 Oct; 27(20):2806-11. PubMed ID: 21893518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case.
    Johansen J; Eriksen M; Kallipolitis B; Valentin-Hansen P
    J Mol Biol; 2008 Oct; 383(1):1-9. PubMed ID: 18619465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.