These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 31469935)

  • 21. Revealing the Architecture of the Cell Wall in Living Plant Cells by Bioimaging and Enzymatic Degradation.
    Yilmaz N; Kodama Y; Numata K
    Biomacromolecules; 2020 Jan; 21(1):95-103. PubMed ID: 31496226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fungal hemicellulose-degrading enzymes cause physical property changes concomitant with solubilization of cell wall polysaccharides.
    Takahashi M; Yamamoto R; Sakurai N; Nakano Y; Takeda T
    Planta; 2015 Feb; 241(2):359-70. PubMed ID: 25301670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls.
    Suslov D; Verbelen JP
    J Exp Bot; 2006; 57(10):2183-92. PubMed ID: 16720609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy.
    Wilson RH; Smith AC; Kacuráková M; Saunders PK; Wellner N; Waldron KW
    Plant Physiol; 2000 Sep; 124(1):397-405. PubMed ID: 10982452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A continuum mechanics model of the plant cell wall reveals interplay between enzyme action and cell wall structure.
    Smithers ET; Luo J; Dyson RJ
    Eur Phys J E Soft Matter; 2024 Jan; 47(1):1. PubMed ID: 38183519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects.
    Hervé C; Rogowski A; Blake AW; Marcus SE; Gilbert HJ; Knox JP
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15293-8. PubMed ID: 20696902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fruit softening: evidence for pectate lyase action in vivo in date (Phoenix dactylifera) and rosaceous fruit cell walls.
    Al Hinai TZS; Vreeburg RAM; Mackay CL; Murray L; Sadler IH; Fry SC
    Ann Bot; 2021 Sep; 128(5):511-525. PubMed ID: 34111288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and growth of plant cell walls.
    Cosgrove DJ
    Nat Rev Mol Cell Biol; 2024 May; 25(5):340-358. PubMed ID: 38102449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope.
    Cybulska J; Zdunek A; Psonka-Antonczyk KM; Stokke BT
    Carbohydr Polym; 2013 Jan; 92(1):128-37. PubMed ID: 23218275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks.
    Nicolas WJ; Fäßler F; Dutka P; Schur FKM; Jensen G; Meyerowitz E
    Curr Biol; 2022 Jun; 32(11):2375-2389.e6. PubMed ID: 35508170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directed in vitro evolution of bacterial expansin BsEXLX1 for higher cellulose binding and its consequences for plant cell wall-loosening activities.
    Hepler NK; Cosgrove DJ
    FEBS Lett; 2019 Sep; 593(18):2545-2555. PubMed ID: 31271651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical Characterization of Onion Epidermal Cell Walls.
    Durachko DM; Park YB; Zhang T; Cosgrove DJ
    Bio Protoc; 2017 Dec; 7(24):e2662. PubMed ID: 34595320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen.
    Tabuchi A; Li LC; Cosgrove DJ
    Plant J; 2011 Nov; 68(3):546-59. PubMed ID: 21749508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring the Biomechanical Loosening Action of Bacterial Expansins on Paper and Plant Cell Walls.
    Cosgrove DJ; Hepler NK; Wagner ER; Durachko DM
    Methods Mol Biol; 2017; 1588():157-165. PubMed ID: 28417367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of the native cell wall structures of the marine alga Ventricaria ventricosa (Siphonocladales, Chlorophyceae) using atomic force microscopy.
    Eslick EM; Beilby MJ; Moon AR
    Microscopy (Oxf); 2014 Apr; 63(2):131-40. PubMed ID: 24463192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elastic shell theory for plant cell wall stiffness reveals contributions of cell wall elasticity and turgor pressure in AFM measurement.
    Tsugawa S; Yamasaki Y; Horiguchi S; Zhang T; Muto T; Nakaso Y; Ito K; Takebayashi R; Okano K; Akita E; Yasukuni R; Demura T; Mimura T; Kawaguchi K; Hosokawa Y
    Sci Rep; 2022 Aug; 12(1):13044. PubMed ID: 35915101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.
    Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA
    BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.).
    Chen D; Melton LD; McGillivray DJ; Ryan TM; Harris PJ
    Planta; 2019 Dec; 250(6):1819-1832. PubMed ID: 31463558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying hydrostatic pressure in plant cells by using indentation with an atomic force microscope.
    Beauzamy L; Derr J; Boudaoud A
    Biophys J; 2015 May; 108(10):2448-2456. PubMed ID: 25992723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.