These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31470027)

  • 1. Stability of multi-subunit proteins and conformational lock.
    Alaei L; Moosavi-Movahedi AA
    Prog Biophys Mol Biol; 2020 Jan; 150():145-152. PubMed ID: 31470027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins.
    Chebotareva NA; Roman SG; Kurganov BI
    Biophys Rev; 2016 Dec; 8(4):397-407. PubMed ID: 28510015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociative thermal inactivation, stability, and activity of oligomeric enzymes.
    Poltorak OM; Chukhray ES; Torshin IY
    Biochemistry (Mosc); 1998 Mar; 63(3):303-11. PubMed ID: 9526127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational lock and dissociative thermal inactivation of lentil seedling amine oxidase.
    Moosavi-Nejad SZ; Moosavi-Movahedi AA; Rezaei-Tavirani M; Floris G; Medda R
    J Biochem Mol Biol; 2003 Mar; 36(2):167-72. PubMed ID: 12689514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irreversible thermal inactivation and conformational lock of alpha glucosidase.
    Alaei L; Izadi Z; Jafari S; Jahanshahi F; Jaymand M; Mohammadi P; Paray BA; Hasan A; Falahati M; Varnamkhasti BS; Saboury AA; Moosavi-Nejad Z; Sheikh-Hosseini M; Derakhshankhah H
    J Biomol Struct Dyn; 2021 Jun; 39(9):3256-3262. PubMed ID: 32345145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of the conformational lock, dissociative thermal inactivation and stability of euphorbia latex and lentil seedling amine oxidases.
    Amani M; Moosavi-Movahedi AA; Floris G; Longu S; Mura A; Moosavi-Nejad SZ; Saboury AA; Ahmad F
    Protein J; 2005 Apr; 24(3):183-91. PubMed ID: 16096724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal inactivation and conformational lock of bovine carbonic anhydrase.
    Alaei L; Moosavi-Movahedi AA; Hadi H; Saboury AA; Ahmad F; Amani M
    Protein Pept Lett; 2012 Aug; 19(8):852-8. PubMed ID: 22762185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation.
    Neet KE; Timm DE
    Protein Sci; 1994 Dec; 3(12):2167-74. PubMed ID: 7756976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of protein conformational stability and integrity using calorimetry and FT-Raman spectroscopy correlated with enzymatic activity.
    Elkordy AA; Forbes RT; Barry BW
    Eur J Pharm Sci; 2008 Feb; 33(2):177-90. PubMed ID: 18207710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding and inactivation during thermal denaturation of an enzyme that exhibits phytase and acid phosphatase activities.
    Wang XY; Meng FG; Zhou HM
    Int J Biochem Cell Biol; 2004 Mar; 36(3):447-59. PubMed ID: 14687923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disulfide bonds and thermal stability in T4 lysozyme.
    Wetzel R; Perry LJ; Baase WA; Becktel WJ
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):401-5. PubMed ID: 3277175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic and kinetic stability of penicillin acylase from Escherichia coli.
    Grinberg VY; Burova TV; Grinberg NV; Shcherbakova TA; Guranda DT; Chilov GG; Svedas VK
    Biochim Biophys Acta; 2008 May; 1784(5):736-46. PubMed ID: 18314015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of stabilization centers in protein thermal stability.
    Magyar C; Gromiha MM; Sávoly Z; Simon I
    Biochem Biophys Res Commun; 2016 Feb; 471(1):57-62. PubMed ID: 26845354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal inactivation and conformational lock studies on horse liver alcohol dehydrogenase: structural mechanism.
    Moosavi-Movahedi F; Saboury AA; Alijanvand HH; Bohlooli M; Salami M; Moosavi-Movahedi AA
    Int J Biol Macromol; 2013 Jul; 58():66-72. PubMed ID: 23548863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.
    Goyal M; Chaudhuri TK; Kuwajima K
    PLoS One; 2014; 9(12):e115877. PubMed ID: 25548918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal denaturation of beta-galactosidase and of two site-specific mutants.
    Edwards RA; Jacobson AL; Huber RE
    Biochemistry; 1990 Dec; 29(49):11001-8. PubMed ID: 2125499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of thermal denaturation of maltodextrin phosphorylase from Escherichia coli.
    Griessler R; D'auria S; Schinzel R; Tanfani F; Nidetzky B
    Biochem J; 2000 Mar; 346 Pt 2(Pt 2):255-63. PubMed ID: 10677342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase.
    Baptista RP; Cabral JM; Melo EP
    Biotechnol Bioeng; 2000 Dec; 70(6):699-703. PubMed ID: 11064340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study on the irreversible thermal denaturation of yeast phosphoglycerate kinase.
    Galisteo ML; Mateo PL; Sanchez-Ruiz JM
    Biochemistry; 1991 Feb; 30(8):2061-6. PubMed ID: 1998668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinetic stability of cytochrome C oxidase: effect of bound phospholipid and dimerization.
    Sedlák E; Varhač R; Musatov A; Robinson NC
    Biophys J; 2014 Dec; 107(12):2941-2949. PubMed ID: 25517159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.