These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31470027)

  • 41. In vitro biochemical and thermodynamic characterization of nucleocapsid protein of SARS.
    Luo H; Ye F; Sun T; Yue L; Peng S; Chen J; Li G; Du Y; Xie Y; Yang Y; Shen J; Wang Y; Shen X; Jiang H
    Biophys Chem; 2004 Dec; 112(1):15-25. PubMed ID: 15501572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus.
    Brown I; Dafforn TR; Fryer PJ; Cox PW
    Biochim Biophys Acta; 2013 Dec; 1834(12):2600-5. PubMed ID: 24063888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The proapoptotic protein Smac/DIABLO dimer has the highest stability as measured by pressure and urea denaturation.
    Gonçalves RB; Sanches D; Souza TL; Silva JL; Oliveira AC
    Biochemistry; 2008 Mar; 47(12):3832-41. PubMed ID: 18307314
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assembly-dependent conformational changes in a viral capsid protein. Calorimetric comparison of successive conformational states of the gp23 surface lattice of bacteriophage T4.
    Ross PD; Black LW; Bisher ME; Steven AC
    J Mol Biol; 1985 Jun; 183(3):353-64. PubMed ID: 4020864
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The denaturation and degradation of stable enzymes at high temperatures.
    Daniel RM; Dines M; Petach HH
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):1-11. PubMed ID: 8694749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of Tableting on the Conformation and Thermal Stability of Trypsin as a Model Protein.
    Klukkert M; van de Weert M; Fanø M; Rades T; Leopold CS
    J Pharm Sci; 2015 Dec; 104(12):4314-4321. PubMed ID: 26462015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry.
    Schön A; Clarkson BR; Jaime M; Freire E
    Proteins; 2017 Nov; 85(11):2009-2016. PubMed ID: 28722205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature-induced dissociation of protein aggregates: accessing the denatured state.
    Meersman F; Heremans K
    Biochemistry; 2003 Dec; 42(48):14234-41. PubMed ID: 14640691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical compression affecting the thermal-induced conformational stability and denaturation temperature of human fibrinogen.
    Lin SY; Hsieh TF; Wei YS; Li MJ
    Int J Biol Macromol; 2005 Nov; 37(3):127-33. PubMed ID: 16257049
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of N-terminal residues on folding and stability of C-phycoerythrin: simulation and urea-induced denaturation studies.
    Anwer K; Sonani R; Madamwar D; Singh P; Khan F; Bisetty K; Ahmad F; Hassan MI
    J Biomol Struct Dyn; 2015; 33(1):121-33. PubMed ID: 24279700
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Water mobility, denaturation and the glass transition in proteins.
    Porter D; Vollrath F
    Biochim Biophys Acta; 2012 Jun; 1824(6):785-91. PubMed ID: 22465032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational rigidity in a lattice model of proteins.
    Collet O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061912. PubMed ID: 16241266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of inactivation and conformational changes of D-glyceraldehyde-3-phosphate dehydrogenase during thermal denaturation.
    Lin YZ; Liang SJ; Zhou JM; Tsou CL; Wu PQ; Zhou ZK
    Biochim Biophys Acta; 1990 Apr; 1038(2):247-52. PubMed ID: 2331488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. pH dependence of the reversible and irreversible thermal denaturation of gamma interferons.
    Mulkerrin MG; Wetzel R
    Biochemistry; 1989 Aug; 28(16):6556-61. PubMed ID: 2506928
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus.
    Arnott MA; Michael RA; Thompson CR; Hough DW; Danson MJ
    J Mol Biol; 2000 Dec; 304(4):657-68. PubMed ID: 11099387
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Folding kinetics of proteins and cold denaturation.
    Collet O
    J Chem Phys; 2008 Oct; 129(15):155101. PubMed ID: 19045231
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energetics of ribonuclease T1 structure.
    Yu Y; Makhatadze GI; Pace CN; Privalov PL
    Biochemistry; 1994 Mar; 33(11):3312-9. PubMed ID: 8136367
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interpretation of DSC data on protein denaturation complicated by kinetic and irreversible effects.
    Grinberg VY; Burova TV; Haertlé T; Tolstoguzov VB
    J Biotechnol; 2000 May; 79(3):269-80. PubMed ID: 10867187
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigating conformational stability of bovine pancreatic phospholipase A2: a novel concept in evaluating the contribution of the 'native-framework' of disulphides to the global conformational stability of proteins.
    Singh RR; Chang JY
    Biochem J; 2004 Feb; 377(Pt 3):685-92. PubMed ID: 14533980
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stability of butyrylcholinesterase: thermal inactivation in water and deuterium oxide.
    Masson P; Laurentie M
    Biochim Biophys Acta; 1988 Nov; 957(1):111-21. PubMed ID: 3179317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.