BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31470589)

  • 1. SERS-Active Cu Nanoparticles on Carbon Nitride Support Fabricated Using Pulsed Laser Ablation.
    Dizajghorbani-Aghdam H; Miller TS; Malekfar R; McMillan PF
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Enhanced Raman scattering of methylene blue on titanium nitride nanoparticles synthesized by laser ablation in organic solvents.
    Esmaeilzadeh M; Dizajghorbani-Aghdam H; Malekfar R
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119721. PubMed ID: 33845389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman scattering studies of Cu/Cu
    Dizajghorbani Aghdam H; Moemen Bellah S; Malekfar R
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117379. PubMed ID: 31323492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanogap-tailored Au nanoparticles fabricated by pulsed laser ablation for surface-enhanced Raman scattering.
    Lee SJ; Lee H; Begildayeva T; Yu Y; Theerthagiri J; Kim Y; Lee YW; Han SW; Choi MY
    Biosens Bioelectron; 2022 Feb; 197():113766. PubMed ID: 34753095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy.
    Zhan Y; Liu Y; Zu H; Guo Y; Wu S; Yang H; Liu Z; Lei B; Zhuang J; Zhang X; Huang D; Hu C
    Nanoscale; 2018 Mar; 10(13):5997-6004. PubMed ID: 29542776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explosives sensing using Ag-Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation.
    Satya Bharati MS; Chandu B; Rao SV
    RSC Adv; 2019 Jan; 9(3):1517-1525. PubMed ID: 35518042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering.
    Lee JP; Chen D; Li X; Yoo S; Bottomley LA; El-Sayed MA; Park S; Liu M
    Nanoscale; 2013 Dec; 5(23):11620-4. PubMed ID: 24126702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings.
    Tanahashi I; Harada Y
    Nanoscale Res Lett; 2014; 9(1):298. PubMed ID: 24959110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles.
    Chen J; Mårtensson T; Dick KA; Deppert K; Xu HQ; Samuelson L; Xu H
    Nanotechnology; 2008 Jul; 19(27):275712. PubMed ID: 21828724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective Graphene/Plasmonic Nanoparticle Hybrids for Surface-Enhanced Raman Scattering Sensors.
    Biroju RK; Marepally BC; Malik P; Dhara S; Gengan S; Maity D; Narayanan TN; Giri PK
    ACS Omega; 2023 Jan; 8(4):4344-4356. PubMed ID: 36743051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LSPR Tunable Ag@PDMS SERS Substrate for High Sensitivity and Uniformity Detection of Dye Molecules.
    Yan X; Shi H; Jia P; Sun X
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ag@Au core-shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance.
    Vinod M; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():913-9. PubMed ID: 26004101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence
studies on live endothelial cells.
    Jaworska A; Wojcik T; Malek K; Kwolek U; Kepczynski M; Ansary AA; Chlopicki S; Baranska M
    Mikrochim Acta; 2015; 182(1):119-127. PubMed ID: 25568498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MoS
    Lin S; Mandavkar R; Burse S; Habib MA; Khalid T; Joni MH; Chung YU; Kunwar S; Lee J
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach.
    Sivanesan A; Adamkiewicz W; Kalaivani G; Kamińska A; Waluk J; Hołyst R; Izake EL
    Analyst; 2015 Jan; 140(2):489-96. PubMed ID: 25374971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SERS based detection of multiple analytes from dye/explosive mixtures using picosecond laser fabricated gold nanoparticles and nanostructures.
    Byram C; Moram SSB; Soma VR
    Analyst; 2019 Mar; 144(7):2327-2336. PubMed ID: 30768076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.