These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31470598)

  • 1. Zwitterionic Acetylated Cellulose Nanofibrils.
    Rostami J; Mathew AP; Edlund U
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31470598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant.
    Jebali Z; Nabili A; Majdoub H; Boufi S
    Int J Biol Macromol; 2018 Feb; 107(Pt A):530-536. PubMed ID: 28911807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin.
    Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H
    Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers.
    Kaldéus T; Telaretti Leggieri MR; Cobo Sanchez C; Malmström E
    Biomacromolecules; 2019 May; 20(5):1937-1943. PubMed ID: 30889349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide.
    Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q
    Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leakage-proof microencapsulation of phase change materials by emulsification with acetylated cellulose nanofibrils.
    Shi X; Yazdani MR; Ajdary R; Rojas OJ
    Carbohydr Polym; 2021 Feb; 254():117279. PubMed ID: 33357855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils.
    Navarro JRG; Edlund U
    Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.
    Larsson PA; Berglund LA; Wågberg L
    Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor.
    Božič M; Vivod V; Kavčič S; Leitgeb M; Kokol V
    Carbohydr Polym; 2015 Jul; 125():340-51. PubMed ID: 25857991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.
    Saini S; Yücel Falco Ç; Belgacem MN; Bras J
    Carbohydr Polym; 2016 Jan; 135():239-47. PubMed ID: 26453874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(II) and a positively charged dye.
    Sehaqui H; Perez de Larraya U; Tingaut P; Zimmermann T
    Soft Matter; 2015 Jul; 11(26):5294-300. PubMed ID: 26052685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes.
    Bansal M; Chauhan GS; Kaushik A; Sharma A
    Int J Biol Macromol; 2016 Oct; 91():887-94. PubMed ID: 27316771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive cellulose nanofibrils for specific human IgG binding.
    Zhang Y; Carbonell RG; Rojas OJ
    Biomacromolecules; 2013 Dec; 14(12):4161-8. PubMed ID: 24131287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde.
    Keshk SM; Ramadan AM; Bondock S
    Carbohydr Polym; 2015 Aug; 127():246-51. PubMed ID: 25965481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth.
    Cao Y; Jiang Y; Song Y; Cao S; Miao M; Feng X; Fang J; Shi L
    Carbohydr Polym; 2015 Oct; 131():152-8. PubMed ID: 26256171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.
    Balea A; Sanchez-Salvador JL; Monte MC; Merayo N; Negro C; Blanco A
    Molecules; 2019 May; 24(9):. PubMed ID: 31075959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaClO oxidation of water-soluble cellulose acetate.
    Gomez-Bujedo S; Fleury E; Vignon MR
    Biomacromolecules; 2004; 5(2):565-71. PubMed ID: 15003022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanofibrils extracted from the byproduct of cotton plant.
    Miao X; Lin J; Tian F; Li X; Bian F; Wang J
    Carbohydr Polym; 2016 Jan; 136():841-50. PubMed ID: 26572420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency.
    Trigui K; De Loubens C; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Jul; 240():116342. PubMed ID: 32475596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cationic nanofibrillar cellulose with high antibacterial properties.
    Chaker A; Boufi S
    Carbohydr Polym; 2015 Oct; 131():224-32. PubMed ID: 26256179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.