BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31470695)

  • 21. Efficient construction of a diverse conformational library for amyloid-β as an intrinsically disordered protein.
    Salehi N; Amininasab M; Firouzi R; Karimi-Jafari MH
    J Mol Graph Model; 2019 May; 88():183-193. PubMed ID: 30708285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.
    Chen W; Shi C; MacKerell AD; Shen J
    J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments.
    Granata D; Baftizadeh F; Habchi J; Galvagnion C; De Simone A; Camilloni C; Laio A; Vendruscolo M
    Sci Rep; 2015 Oct; 5():15449. PubMed ID: 26498066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen Bond Networks and Hydrophobic Effects in the Amyloid β
    Jong K; Grisanti L; Hassanali A
    J Chem Inf Model; 2017 Jul; 57(7):1548-1562. PubMed ID: 28603985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epitope region identification challenges of intrinsically disordered proteins in neurodegenerative diseases: Secondary structure dependence of α-synuclein on simulation techniques and force field parameters.
    Mandaci SY; Caliskan M; Sariaslan MF; Uversky VN; Coskuner-Weber O
    Chem Biol Drug Des; 2020 Jul; 96(1):659-667. PubMed ID: 31903719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles.
    Faller P; Hureau C; La Penna G
    Acc Chem Res; 2014 Aug; 47(8):2252-9. PubMed ID: 24871565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrophobic Collapse of the Intrinsically Disordered Transcription Factor Myc Associated Factor X.
    Kizilsavas G; Ledolter K; Kurzbach D
    Biochemistry; 2017 Oct; 56(40):5365-5372. PubMed ID: 28880537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microscopic hydration properties of the aβ1-42 Peptide monomer and the globular protein ubiquitin: a comparative molecular dynamics study.
    Jose JC; Khatua P; Bansal N; Sengupta N; Bandyopadhyay S
    J Phys Chem B; 2014 Oct; 118(40):11591-604. PubMed ID: 25198420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dimerization Mechanism of Alzheimer Aβ
    Nguyen PH; Sterpone F; Pouplana R; Derreumaux P; Campanera JM
    J Phys Chem B; 2016 Dec; 120(47):12111-12126. PubMed ID: 27933940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calibrated Langevin-dynamics simulations of intrinsically disordered proteins.
    Smith WW; Ho PY; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042709. PubMed ID: 25375525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Secondary structure dependence of amyloid-β(1-40) on simulation techniques and force field parameters.
    Caliskan M; Mandaci SY; Uversky VN; Coskuner-Weber O
    Chem Biol Drug Des; 2021 May; 97(5):1100-1108. PubMed ID: 33580600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic approaches unraveling regulation and aggregation of intrinsically disordered β-amyloids implicated in Alzheimer's disease.
    Kumari A; Rajput R; Shrivastava N; Somvanshi P; Grover A
    Int J Biochem Cell Biol; 2018 Jun; 99():19-27. PubMed ID: 29571707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational investigation of retro-isomer equilibrium structures: Intrinsically disordered, foldable, and cyclic peptides.
    Zerze GH; Stillinger FH; Debenedetti PG
    FEBS Lett; 2020 Jan; 594(1):104-113. PubMed ID: 31356683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the Coupled Two-Dimensional Main Chain Torsional Potential in Modeling Intrinsically Disordered Proteins.
    Gao Y; Zhang C; Zhang JZ; Mei Y
    J Chem Inf Model; 2017 Feb; 57(2):267-274. PubMed ID: 28095698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folding and structural polymorphism of p53 C-terminal domain: One peptide with many conformations.
    Kumar A; Kumar P; Kumari S; Uversky VN; Giri R
    Arch Biochem Biophys; 2020 May; 684():108342. PubMed ID: 32184088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing a molecular dynamics force field for both folded and disordered protein states.
    Robustelli P; Piana S; Shaw DE
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4758-E4766. PubMed ID: 29735687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment.
    Zheng W; Borgia A; Buholzer K; Grishaev A; Schuler B; Best RB
    J Am Chem Soc; 2016 Sep; 138(36):11702-13. PubMed ID: 27583687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Resolution Structures of the Amyloid-β 1-42 Dimers from the Comparison of Four Atomistic Force Fields.
    Man VH; Nguyen PH; Derreumaux P
    J Phys Chem B; 2017 Jun; 121(24):5977-5987. PubMed ID: 28538095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide.
    Joseph JA; Wales DJ
    J Phys Chem B; 2018 Dec; 122(50):11906-11921. PubMed ID: 30433786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local Structure and Dynamics of Hydration Water in Intrinsically Disordered Proteins.
    Rani P; Biswas P
    J Phys Chem B; 2015 Aug; 119(34):10858-67. PubMed ID: 25871264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.