These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31470703)

  • 1. Making waves: Radiation damping in metallic nanostructures.
    Devkota T; Brown BS; Beane G; Yu K; Hartland GV
    J Chem Phys; 2019 Aug; 151(8):080901. PubMed ID: 31470703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical interface damping for propagating surface plasmon polaritons in gold nanostripes.
    Brown BS; Hartland GV
    J Chem Phys; 2020 Jan; 152(2):024707. PubMed ID: 31941288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires.
    Jones AC; Olmon RL; Skrabalak SE; Wiley BJ; Xia YN; Raschke MB
    Nano Lett; 2009 Jul; 9(7):2553-8. PubMed ID: 19499897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the measurement of relaxation times of acoustic vibrations in metal nanowires.
    Devkota T; Chakraborty D; Yu K; Beane G; Sader JE; Hartland GV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17687-17693. PubMed ID: 29938263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic Sommerfeld resonances in nanorods at grazing incidences.
    Feng S; Halterman K; Overfelt PL; Bowling D
    Opt Express; 2009 Oct; 17(22):19823-41. PubMed ID: 19997204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping.
    Yi C; Su MN; Dongare PD; Chakraborty D; Cai YY; Marolf DM; Kress RN; Ostovar B; Tauzin LJ; Wen F; Chang WS; Jones MR; Sader JE; Halas NJ; Link S
    Nano Lett; 2018 Jun; 18(6):3494-3501. PubMed ID: 29715035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments.
    Major TA; Crut A; Gao B; Lo SS; Del Fatti N; Vallée F; Hartland GV
    Phys Chem Chem Phys; 2013 Mar; 15(12):4169-76. PubMed ID: 23187958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances.
    Li Y; Zhao K; Sobhani H; Bao K; Nordlander P
    J Phys Chem Lett; 2013 Apr; 4(8):1352-7. PubMed ID: 26282152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities.
    Faucheaux JA; Stanton AL; Jain PK
    J Phys Chem Lett; 2014 Mar; 5(6):976-85. PubMed ID: 26270976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized surface plasmon resonances arising from free carriers in doped quantum dots.
    Luther JM; Jain PK; Ewers T; Alivisatos AP
    Nat Mater; 2011 May; 10(5):361-6. PubMed ID: 21478881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering metal adhesion layers that do not deteriorate plasmon resonances.
    Siegfried T; Ekinci Y; Martin OJ; Sigg H
    ACS Nano; 2013 Mar; 7(3):2751-7. PubMed ID: 23432333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of Photothermalization in Plasmonic Nanostructures: Insights into the Steady State.
    Wu S; Sheldon M
    Annu Rev Phys Chem; 2023 Apr; 74():521-545. PubMed ID: 36791779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes.
    Genç A; Patarroyo J; Sancho-Parramon J; Arenal R; Bastús NG; Puntes V; Arbiol J
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons.
    Chen JD; Xiang J; Jiang S; Dai QF; Tie SL; Lan S
    Nanoscale; 2018 May; 10(19):9153-9163. PubMed ID: 29725675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires.
    Aleshire K; Pavlovetc IM; Collette R; Kong XT; Rack PD; Zhang S; Masiello DJ; Camden JP; Hartland GV; Kuno M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2288-2293. PubMed ID: 31964821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Resonances in the Transmission of Surface Plasmon Polaritons between Nanostructures.
    Johns P; Yu K; Devadas MS; Hartland GV
    ACS Nano; 2016 Mar; 10(3):3375-81. PubMed ID: 26866536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.