These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 31470721)
1. Does the Adam-Gibbs relation hold in simulated supercooled liquids? Ozawa M; Scalliet C; Ninarello A; Berthier L J Chem Phys; 2019 Aug; 151(8):084504. PubMed ID: 31470721 [TBL] [Abstract][Full Text] [Related]
2. The relation between molecular dynamics and configurational entropy in room temperature ionic liquids: Test of Adam-Gibbs model. Cheng S; Musiał M; Wojnarowska Z; Paluch M J Chem Phys; 2020 Mar; 152(9):091101. PubMed ID: 33480719 [TBL] [Abstract][Full Text] [Related]
3. Effective temperatures in an exactly solvable model for a fragile glass. Leuzzi L; Nieuwenhuizen TM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011508. PubMed ID: 11461263 [TBL] [Abstract][Full Text] [Related]
4. Entropy and Fragility in Supercooling Liquids. Angell CA J Res Natl Inst Stand Technol; 1997; 102(2):171-185. PubMed ID: 27805135 [TBL] [Abstract][Full Text] [Related]
5. Critical dynamics of dimers: implications for the glass transition. Das D; Farrell G; Kondev J; Chakraborty B J Phys Chem B; 2005 Nov; 109(45):21413-8. PubMed ID: 16853778 [TBL] [Abstract][Full Text] [Related]
6. Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions. Sengupta S; Karmakar S; Dasgupta C; Sastry S Phys Rev Lett; 2012 Aug; 109(9):095705. PubMed ID: 23002857 [TBL] [Abstract][Full Text] [Related]
7. Power law relationship between diffusion coefficients in multi-component glass forming liquids. Parmar ADS; Sengupta S; Sastry S Eur Phys J E Soft Matter; 2018 Aug; 41(8):90. PubMed ID: 30078172 [TBL] [Abstract][Full Text] [Related]
8. Gaussian excitations model for glass-former dynamics and thermodynamics. Matyushov DV; Angell CA J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109 [TBL] [Abstract][Full Text] [Related]
9. Configurational entropy and collective modes in normal and supercooled liquids. Zürcher U; Keyes T Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2065-70. PubMed ID: 11969999 [TBL] [Abstract][Full Text] [Related]
10. Novel approach to numerical measurements of the configurational entropy in supercooled liquids. Berthier L; Coslovich D Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11668-72. PubMed ID: 25071188 [TBL] [Abstract][Full Text] [Related]
11. Application of the entropy theory of glass formation to poly(alpha-olefins). Stukalin EB; Douglas JF; Freed KF J Chem Phys; 2009 Sep; 131(11):114905. PubMed ID: 19778147 [TBL] [Abstract][Full Text] [Related]
12. Correlation between configurational entropy, excess entropy, and ion dynamics in imidazolium-based ionic liquids: Test of the Adam-Gibbs model. Cheng S; Wojnarowska Z; Musiał M; Paluch M J Chem Phys; 2021 Jan; 154(4):044502. PubMed ID: 33514081 [TBL] [Abstract][Full Text] [Related]
13. Viscosity of glass-forming liquids. Mauro JC; Yue Y; Ellison AJ; Gupta PK; Allan DC Proc Natl Acad Sci U S A; 2009 Nov; 106(47):19780-4. PubMed ID: 19903878 [TBL] [Abstract][Full Text] [Related]
14. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. Zhou D; Zhang GG; Law D; Grant DJ; Schmitt EA J Pharm Sci; 2002 Aug; 91(8):1863-72. PubMed ID: 12115813 [TBL] [Abstract][Full Text] [Related]
15. Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling. Masiewicz E; Grzybowski A; Grzybowska K; Pawlus S; Pionteck J; Paluch M Sci Rep; 2015 Sep; 5():13998. PubMed ID: 26365623 [TBL] [Abstract][Full Text] [Related]
16. Dynamically correlated regions and configurational entropy in supercooled liquids. Capaccioli S; Ruocco G; Zamponi F J Phys Chem B; 2008 Aug; 112(34):10652-8. PubMed ID: 18671368 [TBL] [Abstract][Full Text] [Related]
17. Adam-Gibbs Formulation of Enthalpy Relaxation Near the Glass Transition. Hodge IM J Res Natl Inst Stand Technol; 1997; 102(2):195-205. PubMed ID: 27805137 [TBL] [Abstract][Full Text] [Related]
18. Temperature dependence of intermediate-range orders in the viscosity-temperature relationship of supercooled liquids and glasses. Kobayashi H; Takahashi H J Chem Phys; 2010 Mar; 132(10):104504. PubMed ID: 20232968 [TBL] [Abstract][Full Text] [Related]
19. Universal Scaling in the Temperature-Dependent Viscous Dynamics of Metallic Glasses. Zhang M; Chen Y; Dai LH J Phys Chem B; 2021 Apr; 125(13):3419-3425. PubMed ID: 33764771 [TBL] [Abstract][Full Text] [Related]
20. Microscopically based calculations of the free energy barrier and dynamic length scale in supercooled liquids: the comparative role of configurational entropy and elasticity. Rabochiy P; Wolynes PG; Lubchenko V J Phys Chem B; 2013 Dec; 117(48):15204-19. PubMed ID: 24195747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]