BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 31471070)

  • 41. Nucleotide Excision Repair Protein Rad23 Regulates Cell Virulence Independent of Rad4 in Candida albicans.
    Feng J; Yao S; Dong Y; Hu J; Whiteway M; Feng J
    mSphere; 2020 Feb; 5(1):. PubMed ID: 32075883
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mutational analysis of metacaspase CaMca1 and decapping activator Edc3 in the pathogenicity of Candida albicans.
    Jeong JH; Lee SE; Kim J
    Fungal Genet Biol; 2016 Dec; 97():18-23. PubMed ID: 27815149
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.
    Sun L; Liao K; Wang D
    PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complementary adhesin function in C. albicans biofilm formation.
    Nobile CJ; Schneider HA; Nett JE; Sheppard DC; Filler SG; Andes DR; Mitchell AP
    Curr Biol; 2008 Jul; 18(14):1017-24. PubMed ID: 18635358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Linking Sfl1 Regulation of Hyphal Development to Stress Response Kinases in Candida albicans.
    Unoje O; Yang M; Lu Y; Su C; Liu H
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31941808
    [No Abstract]   [Full Text] [Related]  

  • 46. Virulence and pathogenicity of a Candida albicans mutant with reduced filamentation.
    Peroumal D; Manohar K; Patel SK; Kumari P; Sahu SR; Acharya N
    Cell Microbiol; 2019 Dec; 21(12):e13103. PubMed ID: 31424154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distinct roles of Candida albicans-specific genes in host-pathogen interactions.
    Wilson D; Mayer FL; Miramón P; Citiulo F; Slesiona S; Jacobsen ID; Hube B
    Eukaryot Cell; 2014 Aug; 13(8):977-89. PubMed ID: 24610660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans.
    Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F
    Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis.
    Navarathna DH; Pathirana RU; Lionakis MS; Nickerson KW; Roberts DD
    PLoS One; 2016; 11(10):e0164449. PubMed ID: 27727302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.
    Cavalcanti YW; Wilson M; Lewis M; Del-Bel-Cury AA; da Silva WJ; Williams DW
    Biofouling; 2016; 32(2):123-34. PubMed ID: 26795585
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Possible Involvement of Surface Antigen Protein 2 in the Morphological Transition and Biofilm Formation of Candida albicans].
    Okamoto-Shibayama K; Kikuchi Y; Kokubu E; Ishihara K
    Med Mycol J; 2017; 58(4):E139-E143. PubMed ID: 29187716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The heat-induced molecular disaggregase Hsp104 of Candida albicans plays a role in biofilm formation and pathogenicity in a worm infection model.
    Fiori A; Kucharíková S; Govaert G; Cammue BP; Thevissen K; Van Dijck P
    Eukaryot Cell; 2012 Aug; 11(8):1012-20. PubMed ID: 22635920
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fungal pathogenicity and morphological switches.
    Magee PT
    Nat Genet; 2010 Jul; 42(7):560-1. PubMed ID: 20581877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alcohol dehydrogenase I expression correlates with CDR1, CDR2 and FLU1 expression in Candida albicans from patients with vulvovaginal candidiasis.
    Guo H; Zhang XL; Gao LQ; Li SX; Song YJ; Zhang H
    Chin Med J (Engl); 2013; 126(11):2098-102. PubMed ID: 23769565
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of Candida albicans SPT20 in filamentation, biofilm formation and pathogenesis.
    Tan X; Fuchs BB; Wang Y; Chen W; Yuen GJ; Chen RB; Jayamani E; Anastassopoulou C; Pukkila-Worley R; Coleman JJ; Mylonakis E
    PLoS One; 2014; 9(4):e94468. PubMed ID: 24732310
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnesium deprivation affects cellular circuitry involved in drug resistance and virulence in Candida albicans.
    Hans S; Fatima Z; Hameed S
    J Glob Antimicrob Resist; 2019 Jun; 17():263-275. PubMed ID: 30659981
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans.
    Schweizer A; Rupp S; Taylor BN; Röllinghoff M; Schröppel K
    Mol Microbiol; 2000 Nov; 38(3):435-45. PubMed ID: 11069668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans.
    Krueger KE; Ghosh AK; Krom BP; Cihlar RL
    Microbiology (Reading); 2004 Jan; 150(Pt 1):229-240. PubMed ID: 14702416
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria.
    Cavalcanti YW; Morse DJ; da Silva WJ; Del-Bel-Cury AA; Wei X; Wilson M; Milward P; Lewis M; Bradshaw D; Williams DW
    Biofouling; 2015; 31(1):27-38. PubMed ID: 25574582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.