These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 31471614)

  • 1. Live imaging of mRNA using RNA-stabilized fluorogenic proteins.
    Wu J; Zaccara S; Khuperkar D; Kim H; Tanenbaum ME; Jaffrey SR
    Nat Methods; 2019 Sep; 16(9):862-865. PubMed ID: 31471614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral Tuning by a Single Nucleotide Controls the Fluorescence Properties of a Fluorogenic Aptamer.
    Filonov GS; Song W; Jaffrey SR
    Biochemistry; 2019 Mar; 58(12):1560-1564. PubMed ID: 30838859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorophore-Promoted RNA Folding and Photostability Enables Imaging of Single Broccoli-Tagged mRNAs in Live Mammalian Cells.
    Li X; Kim H; Litke JL; Wu J; Jaffrey SR
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4511-4518. PubMed ID: 31850609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging mRNA trafficking in living cells using fluorogenic proteins.
    Wu J; Jaffrey SR
    Curr Opin Chem Biol; 2020 Aug; 57():177-183. PubMed ID: 32829251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells.
    Bouhedda F; Fam KT; Collot M; Autour A; Marzi S; Klymchenko A; Ryckelynck M
    Nat Chem Biol; 2020 Jan; 16(1):69-76. PubMed ID: 31636432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Principles of Fluorescent RNA Aptamers.
    Trachman RJ; Truong L; Ferré-D'Amaré AR
    Trends Pharmacol Sci; 2017 Oct; 38(10):928-939. PubMed ID: 28728963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Selection of RNA Aptamers that Activate Fluorescence of Small Molecules.
    Filonov GS
    Methods Mol Biol; 2017; 1575():273-289. PubMed ID: 28255887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically Encoded Ratiometric RNA-Based Sensors for Quantitative Imaging of Small Molecules in Living Cells.
    Wu R; Karunanayake Mudiyanselage APKK; Shafiei F; Zhao B; Bagheri Y; Yu Q; McAuliffe K; Ren K; You M
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18271-18275. PubMed ID: 31591798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging bacterial protein expression using genetically encoded RNA sensors.
    Song W; Strack RL; Jaffrey SR
    Nat Methods; 2013 Sep; 10(9):873-5. PubMed ID: 23872791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic dyes for live imaging.
    Strack R
    Nat Methods; 2021 Jan; 18(1):30. PubMed ID: 33408392
    [No Abstract]   [Full Text] [Related]  

  • 11. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.
    Autour A; C Y Jeng S; D Cawte A; Abdolahzadeh A; Galli A; Panchapakesan SSS; Rueda D; Ryckelynck M; Unrau PJ
    Nat Commun; 2018 Feb; 9(1):656. PubMed ID: 29440634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells.
    Jiang L; Xie X; Su N; Zhang D; Chen X; Xu X; Zhang B; Huang K; Yu J; Fang M; Bao B; Zuo F; Yang L; Zhang R; Li H; Huang X; Chen Z; Zeng Q; Liu R; Lin Q; Zhao Y; Ren A; Zhu L; Yang Y
    Nat Methods; 2023 Oct; 20(10):1563-1572. PubMed ID: 37723244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single mRNA Imaging with Fluorogenic RNA Aptamers and Small-molecule Fluorophores.
    Chen W; Zhao X; Yang N; Li X
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202209813. PubMed ID: 36420710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable, Structure-Switching RhoBAST for Hybridization-Mediated mRNA Imaging in Living Cells.
    Bühler B; Schokolowski J; Jäschke A; Sunbul M
    ACS Chem Biol; 2023 Aug; 18(8):1838-1845. PubMed ID: 37530071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From fluorescent proteins to fluorogenic RNAs: Tools for imaging cellular macromolecules.
    Truong L; Ferré-D'Amaré AR
    Protein Sci; 2019 Aug; 28(8):1374-1386. PubMed ID: 31017335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for studying RNA localization in bacteria.
    Kannaiah S; Amster-Choder O
    Methods; 2016 Apr; 98():99-103. PubMed ID: 26707207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of novel fluorogenic RNA aptamers via in vitro compartmentalization using microbead-display libraries.
    Ito K; Tayama T; Uemura S; Iizuka R
    Talanta; 2024 Oct; 278():126488. PubMed ID: 38955098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells.
    Li T; Sun M; Xia S; Huang T; Li RT; Li C; Dai Z; Chen JX; Chen J; Jia N
    Talanta; 2024 Mar; 269():125465. PubMed ID: 38008022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of RNA in live cells.
    Armitage BA
    Curr Opin Chem Biol; 2011 Dec; 15(6):806-12. PubMed ID: 22055496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution.
    Filonov GS; Moon JD; Svensen N; Jaffrey SR
    J Am Chem Soc; 2014 Nov; 136(46):16299-308. PubMed ID: 25337688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.