These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 31471639)
1. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Zhang M; Wei Q; Xia Y; Jin K Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639 [TBL] [Abstract][Full Text] [Related]
2. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Wei Q; Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863 [TBL] [Abstract][Full Text] [Related]
3. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793 [TBL] [Abstract][Full Text] [Related]
4. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related]
5. MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum. Zhao T; Tian H; Xia Y; Jin K Curr Genet; 2019 Aug; 65(4):1025-1040. PubMed ID: 30911768 [TBL] [Abstract][Full Text] [Related]
6. MaPmt1, a protein O-mannosyltransferase, contributes to virulence through governing the appressorium turgor pressure in Metarhizium acridum. Wen Z; Tian H; Xia Y; Jin K Fungal Genet Biol; 2020 Dec; 145():103480. PubMed ID: 33130254 [TBL] [Abstract][Full Text] [Related]
7. MrSVP, a secreted virulence-associated protein, contributes to thermotolerance and virulence of the entomopathogenic fungus Metarhizium robertsii. Xie T; Wang Y; Yu D; Zhang Q; Zhang T; Wang Z; Huang B BMC Microbiol; 2019 Jan; 19(1):25. PubMed ID: 30691387 [TBL] [Abstract][Full Text] [Related]
8. The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum. Zhao T; Wen Z; Xia Y; Jin K Appl Microbiol Biotechnol; 2020 May; 104(9):4005-4015. PubMed ID: 32170386 [TBL] [Abstract][Full Text] [Related]
9. Downregulation of pre-rRNA processing gene Mamrd1 decreases growth, conidiation and virulence in the entomopathogenic fungus Metarhizium acridum. Cao Y; Li K; Xia Y Res Microbiol; 2011 Sep; 162(7):729-36. PubMed ID: 21624460 [TBL] [Abstract][Full Text] [Related]
10. The role of MrUbp4, a deubiquitinase, in conidial yield, thermotolerance, and virulence in Metarhizium robertsii. Zhang H; Chen H; Zhang J; Wang K; Huang B; Wang Z J Invertebr Pathol; 2024 Jun; 204():108111. PubMed ID: 38631560 [TBL] [Abstract][Full Text] [Related]
11. The regulatory role of the transcription factor Crz1 in stress tolerance, pathogenicity, and its target gene expression in Metarhizium acridum. Chen X; Liu Y; Keyhani NO; Xia Y; Cao Y Appl Microbiol Biotechnol; 2017 Jun; 101(12):5033-5043. PubMed ID: 28424845 [TBL] [Abstract][Full Text] [Related]
12. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust. Jiang ZY; Ligoxygakis P; Xia YX Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346 [TBL] [Abstract][Full Text] [Related]
13. The homeobox gene MaH1 governs microcycle conidiation for increased conidial yield by mediating transcription of conidiation pattern shift-related genes in Metarhizium acridum. Gao P; Li M; Jin K; Xia Y Appl Microbiol Biotechnol; 2019 Mar; 103(5):2251-2262. PubMed ID: 30631896 [TBL] [Abstract][Full Text] [Related]
14. MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in Wen Z; Xia Y; Jin K Microbiol Spectr; 2022 Apr; 10(2):e0205121. PubMed ID: 35343772 [TBL] [Abstract][Full Text] [Related]
15. The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum. Gao P; Jin K; Xia Y Curr Genet; 2020 Feb; 66(1):141-153. PubMed ID: 31256233 [TBL] [Abstract][Full Text] [Related]
16. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. He M; Hu J; Xia Y Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419 [TBL] [Abstract][Full Text] [Related]
17. O-mannosyltransferase MaPmt2 contributes to stress tolerance, cell wall integrity and virulence in Metarhizium acridum. Wen Z; Tian H; Xia Y; Jin K J Invertebr Pathol; 2021 Sep; 184():107649. PubMed ID: 34343571 [TBL] [Abstract][Full Text] [Related]
18. Contributions of β-tubulin to cellular morphology, sporulation and virulence in the insect-fungal pathogen, Metarhizium acridum. Zhang J; Jin K; Xia Y Fungal Genet Biol; 2017 Jun; 103():16-24. PubMed ID: 28336393 [TBL] [Abstract][Full Text] [Related]
19. N-terminal zinc fingers of MaNCP1 contribute to growth, stress tolerance, and virulence in Metarhizium acridum. Li C; Xia Y; Jin K Int J Biol Macromol; 2022 Sep; 216():426-436. PubMed ID: 35809667 [TBL] [Abstract][Full Text] [Related]
20. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Jin K; Peng G; Liu Y; Xia Y Fungal Genet Biol; 2015 Apr; 77():61-7. PubMed ID: 25865794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]