These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Distribution of intrafibrillar K and Na and autoradiographic investigation of the K-Na exchange due to direct stimulation. Kállay N; Tigyi-Sebes A Acta Biochim Biophys Acad Sci Hung; 1969; 4(1):71-8. PubMed ID: 5317069 [No Abstract] [Full Text] [Related]
5. [Contraction of the sciatic nerve of a frog during stimulation]. Stepanov KA Biofizika; 1968; 13(3):529-31. PubMed ID: 5747582 [No Abstract] [Full Text] [Related]
6. Influence of the electrical activity of muscle upon the excitability of neighbouring nerve. Biró G Acta Biochim Biophys Acad Sci Hung; 1979; 14(1-2):81-5. PubMed ID: 316259 [TBL] [Abstract][Full Text] [Related]
7. Elimination of microwave effects on the vitality of nerves after blockage of active transport. McRee DI; Wachtel H Radiat Res; 1986 Dec; 108(3):260-8. PubMed ID: 3492008 [TBL] [Abstract][Full Text] [Related]
8. The effect of stimulation of somatic and visceral afferents on the slow rhythm of pulmonary respiration in the frog. Niechaj A Folia Biol (Krakow); 1968; 16(2):167-78. PubMed ID: 5706508 [No Abstract] [Full Text] [Related]
9. [Free radical processes in frog nerves during conduction of rhythmic stimulation]. Revin VV; Timofeev KN; Fedorov GE; Kol's OR Dokl Akad Nauk SSSR; 1978; 238(4):971-3. PubMed ID: 204467 [No Abstract] [Full Text] [Related]
10. [Electrical response of frog lingual epithelium to stimulation of the gustatory nerve]. Byzov AL; Esakov AI; Bukhtiiarov MS Neirofiziologiia; 1983; 15(4):384-90. PubMed ID: 6604880 [TBL] [Abstract][Full Text] [Related]
11. Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord. Chvátal A; Jendelová P; Kríz N; Syková E Physiol Bohemoslov; 1988; 37(3):203-12. PubMed ID: 2975788 [TBL] [Abstract][Full Text] [Related]
12. K and Ca in muscle mechanics, II. K-contracture. Varga-Mányi R Acta Biochim Biophys Acad Sci Hung; 1980; 15(2):95-101. PubMed ID: 6969512 [TBL] [Abstract][Full Text] [Related]
13. Changes in [K+]0 induced by transretinal currents in frog retina. Karwoski CJ Physiol Bohemoslov; 1988; 37(3):217-25. PubMed ID: 2975790 [TBL] [Abstract][Full Text] [Related]
14. Disturbances of neural conduction in isolated frog nerves following exposure to strong electric fields. Eickhorn R; Haverkampf K; Antoni H Muscle Nerve; 1986 May; 9(4):313-8. PubMed ID: 3487034 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of activation of Na, K-ATPase in nerve fibres during rhythmic excitation. Maximov GV; Kols OR Gen Physiol Biophys; 1985 Jun; 4(3):279-85. PubMed ID: 2993099 [TBL] [Abstract][Full Text] [Related]
16. [Axonal organization of the peripheral efferent system in the frog labyrinth]. Prigioni I; Valli P; Casella C Boll Soc Ital Biol Sper; 1980 Mar; 56(5):430-4. PubMed ID: 7387785 [TBL] [Abstract][Full Text] [Related]
17. Extracellular alkaline-acid-alkaline transients in the rat spinal cord evoked by peripheral stimulation. Syková E; Svoboda J Brain Res; 1990 Apr; 512(2):181-9. PubMed ID: 2354355 [TBL] [Abstract][Full Text] [Related]
18. Effect of phlorizin on the changes of membrane potential, water, Na and K transport induced by cevadine in frog muscle. Cseri J; Dankó M; Varga E Acta Physiol Hung; 1985; 65(1):65-80. PubMed ID: 3873168 [TBL] [Abstract][Full Text] [Related]
19. Kinetic investigation of K+ efflux during glycerol treatment of muscle. Hummel Z Physiol Chem Phys Med NMR; 1986; 18(3):207-12. PubMed ID: 3495810 [TBL] [Abstract][Full Text] [Related]
20. Limits of normal nerve function during high-frequency stimulation. Robinson LR; Nielsen VK Muscle Nerve; 1990 Apr; 13(4):279-85. PubMed ID: 2355940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]