These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31471977)

  • 1. Poor nutrition as a potential cause of divergent tree growth near the Arctic treeline in northern Alaska.
    Ellison SBZ; Sullivan PF; Cahoon SMP; Hewitt RE
    Ecology; 2019 Dec; 100(12):e02878. PubMed ID: 31471977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drought-induced stomatal closure probably cannot explain divergent white spruce growth in the Brooks Range, Alaska, USA.
    Brownlee AH; Sullivan PF; Csank AZ; Sveinbjörnsson B; Ellison SB
    Ecology; 2016 Jan; 97(1):145-59. PubMed ID: 27008784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.
    Sullivan PF; Ellison SB; McNown RW; Brownlee AH; Sveinbjörnsson B
    Ecology; 2015 Mar; 96(3):716-27. PubMed ID: 26236868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska.
    Sveinbjörnsson B; Smith M; Traustason T; Ruess RW; Sullivan PF
    Oecologia; 2010 Aug; 163(4):833-43. PubMed ID: 20229243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic.
    Abbott BW; Rocha AV; Shogren A; Zarnetske JP; Iannucci F; Bowden WB; Bratsman SP; Patch L; Watts R; Fulweber R; Frei RJ; Huebner AM; Ludwig SM; Carling GT; O'Donnell JA
    Glob Chang Biol; 2021 Apr; 27(7):1408-1430. PubMed ID: 33394532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moisture-driven shift in the climate sensitivity of white spruce xylem anatomical traits is coupled to large-scale oscillation patterns across northern treeline in northwest North America.
    Lange J; Carrer M; Pisaric MFJ; Porter TJ; Seo JW; Trouillier M; Wilmking M
    Glob Chang Biol; 2020 Mar; 26(3):1842-1856. PubMed ID: 31799729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.
    Walker XJ; Mack MC; Johnstone JF
    Glob Chang Biol; 2015 Aug; 21(8):3102-13. PubMed ID: 25683740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warming drives a front of white spruce establishment near western treeline, Alaska.
    Miller AE; Wilson TL; Sherriff RL; Walton J
    Glob Chang Biol; 2017 Dec; 23(12):5509-5522. PubMed ID: 28712139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting drivers and trends of coniferous and deciduous tree growth in interior Alaska.
    Cahoon SMP; Sullivan PF; Brownlee AH; Pattison RR; Andersen HE; Legner K; Hollingsworth TN
    Ecology; 2018 Jun; 99(6):1284-1295. PubMed ID: 29569245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can snowshoe hares control treeline expansions?
    Olnes J; Kielland K; Juday GP; Mann DH; Genet H; Ruess RW
    Ecology; 2017 Oct; 98(10):2506-2512. PubMed ID: 28766697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research.
    Ryan MG
    Tree Physiol; 2013 Nov; 33(11):1123-31. PubMed ID: 24300337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens).
    Halman JM; Schaberg PG; Hawley GJ; Eagar C
    Tree Physiol; 2008 Jun; 28(6):855-62. PubMed ID: 18381266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited prospects for future alpine treeline advance in the Canadian Rocky Mountains.
    Davis EL; Gedalof Z
    Glob Chang Biol; 2018 Oct; 24(10):4489-4504. PubMed ID: 29856111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogeochemistry of a treeline watershed, northwestern Alaska.
    Stottlemyer R
    J Environ Qual; 2001; 30(6):1990-8. PubMed ID: 11790005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labile carbon limits late winter microbial activity near Arctic treeline.
    Sullivan PF; Stokes MC; McMillan CK; Weintraub MN
    Nat Commun; 2020 Aug; 11(1):4024. PubMed ID: 32788652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stand basal area and solar radiation amplify white spruce climate sensitivity in interior Alaska: Evidence from carbon isotopes and tree rings.
    Nicklen EF; Roland CA; Csank AZ; Wilmking M; Ruess RW; Muldoon LA
    Glob Chang Biol; 2019 Mar; 25(3):911-926. PubMed ID: 30408264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska.
    Csank AZ; Miller AE; Sherriff RL; Berg EE; Welker JM
    Ecol Appl; 2016 Oct; 26(7):2001-2020. PubMed ID: 27755740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus limitation of aboveground production in northern hardwood forests.
    Goswami S; Fisk MC; Vadeboncoeur MA; Garrison-Johnston M; Yanai RD; Fahey TJ
    Ecology; 2018 Feb; 99(2):438-449. PubMed ID: 29205288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successional and physical controls on the retention of nitrogen in an undisturbed boreal forest ecosystem.
    Brenner RE; Boone RD; Jones JB; Lajtha K; Ruess RW
    Oecologia; 2006 Jul; 148(4):602-11. PubMed ID: 16521021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.