BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31472038)

  • 1. Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens.
    Berbegal M; Ramón-Albalat A; León M; Armengol J
    Pest Manag Sci; 2020 Mar; 76(3):967-977. PubMed ID: 31472038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to control Botryosphaeria dieback and black-foot pathogens in grapevine propagation material.
    Leal C; Gramaje D; Fontaine F; Richet N; Trotel-Aziz P; Armengol J
    Pest Manag Sci; 2023 May; 79(5):1674-1683. PubMed ID: 36573682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy.
    Longa CM; Savazzini F; Tosi S; Elad Y; Pertot I
    J Appl Microbiol; 2009 May; 106(5):1549-57. PubMed ID: 19210568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grapevine nursery propagation material as source of fungal trunk disease pathogens in Uruguay.
    Carbone MJ; Gelabert M; Moreira V; Mondino P; Alaniz S
    Front Fungal Biol; 2022; 3():958466. PubMed ID: 37746215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Factors Conditioning the Expression of Botryosphaeria Dieback in Grapevine for Integrated Management of the Disease.
    Leal C; Trotel-Aziz P; Gramaje D; Armengol J; Fontaine F
    Phytopathology; 2024 Jan; 114(1):21-34. PubMed ID: 37505093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocontrol Activity of
    Pollard-Flamand J; Boulé J; Hart M; Úrbez-Torres JR
    J Fungi (Basel); 2022 Apr; 8(4):. PubMed ID: 35448640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine.
    Del Pilar Martínez-Diz M; Díaz-Losada E; Andrés-Sodupe M; Bujanda R; Maldonado-González MM; Ojeda S; Yacoub A; Rey P; Gramaje D
    Pest Manag Sci; 2021 Feb; 77(2):697-708. PubMed ID: 32841479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating treatments for the protection of grapevine pruning wounds from natural infection by trunk disease fungi.
    Leal C; Bujanda R; López-Manzanares B; Ojeda S; Berbegal M; Villa-Llop A; Santesteban LG; Palacios J; Gramaje D
    Plant Dis; 2024 May; ():. PubMed ID: 38812365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Systematic Survey on Prevalence of Grapevine Trunk Disease Pathogens in Oregon Vineyards.
    Hernandez MN; Kc AN
    Plant Dis; 2023 May; 107(5):1355-1364. PubMed ID: 36089679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Trichoderma species colonization of nursery grapevines for improved management of black foot disease.
    van Jaarsveld WJ; Halleen F; Bester MC; Pierron RJ; Stempien E; Mostert L
    Pest Manag Sci; 2021 Jan; 77(1):397-405. PubMed ID: 32741056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of white mustard cover crop residue, soil chemical fumigation and Trichoderma spp. root treatment on black-foot disease control in grapevine.
    Berlanas C; Andrés-Sodupe M; López-Manzanares B; Maldonado-González MM; Gramaje D
    Pest Manag Sci; 2018 Dec; 74(12):2864-2873. PubMed ID: 29781195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.
    Álvarez-Pérez JM; González-García S; Cobos R; Olego MÁ; Ibañez A; Díez-Galán A; Garzón-Jimeno E; Coque JJR
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in Fungal Community in Grapevine (
    Lade SB; Štraus D; Oliva J
    J Fungi (Basel); 2022 Jan; 8(1):. PubMed ID: 35049987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivar Contributes to the Beneficial Effects of
    Leal C; Richet N; Guise JF; Gramaje D; Armengol J; Fontaine F; Trotel-Aziz P
    Front Microbiol; 2021; 12():726132. PubMed ID: 34721323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot Water Treatment Causes Lasting Alteration to the Grapevine (
    Lade SB; Štraus D; Buñol A; Oliva J
    J Fungi (Basel); 2022 May; 8(5):. PubMed ID: 35628741
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Reis P; Pierron R; Larignon P; Lecomte P; Abou-Mansour E; Farine S; Bertsch C; Jacques A; Trotel-Aziz P; Rego C; Fontaine F
    Phytopathology; 2019 Jun; 109(6):916-931. PubMed ID: 30852973
    [No Abstract]   [Full Text] [Related]  

  • 17. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes.
    Mutawila C; Stander C; Halleen F; Vivier MA; Mostert L
    Protoplasma; 2017 Mar; 254(2):863-879. PubMed ID: 27352313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichoderma spp. volatile organic compounds protect grapevine plants by activating defense-related processes against downy mildew.
    Lazazzara V; Vicelli B; Bueschl C; Parich A; Pertot I; Schuhmacher R; Perazzolli M
    Physiol Plant; 2021 Aug; 172(4):1950-1965. PubMed ID: 33783004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects.
    Gramaje D; Úrbez-Torres JR; Sosnowski MR
    Plant Dis; 2018 Jan; 102(1):12-39. PubMed ID: 30673457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grapevine trunk diseases under thermal and water stresses.
    Songy A; Fernandez O; Clément C; Larignon P; Fontaine F
    Planta; 2019 Jun; 249(6):1655-1679. PubMed ID: 30805725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.