These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 31472175)

  • 1. Reconstruction of low-resolution molecular structures from simulated atomic force microscopy images.
    Dasgupta B; Miyashita O; Tama F
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129420. PubMed ID: 31472175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of Three-Dimensional Conformations of Bacterial ClpB from High-Speed Atomic-Force-Microscopy Images.
    Dasgupta B; Miyashita O; Uchihashi T; Tama F
    Front Mol Biosci; 2021; 8():704274. PubMed ID: 34422905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Fitting of Biomolecular Structures to Atomic Force Microscopy Images via Biased Molecular Simulations.
    Niina T; Fuchigami S; Takada S
    J Chem Theory Comput; 2020 Feb; 16(2):1349-1358. PubMed ID: 31909999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis.
    Wu X; Miyashita O; Tama F
    J Phys Chem B; 2024 Oct; 128(39):9363-9372. PubMed ID: 39319845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid approach to study large conformational transitions of biomolecules from single particle XFEL diffraction data.
    Asi H; Dasgupta B; Nagai T; Miyashita O; Tama F
    Front Mol Biosci; 2022; 9():913860. PubMed ID: 36660427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images.
    Amyot R; Marchesi A; Franz CM; Casuso I; Flechsig H
    PLoS Comput Biol; 2022 Mar; 18(3):e1009970. PubMed ID: 35294442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images.
    Ogane T; Noshiro D; Ando T; Yamashita A; Sugita Y; Matsunaga Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010384. PubMed ID: 36580448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics.
    Amyot R; Flechsig H
    PLoS Comput Biol; 2020 Nov; 16(11):e1008444. PubMed ID: 33206646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes.
    Uchihashi T; Scheuring S
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):229-240. PubMed ID: 28716648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images.
    Matsunaga Y; Fuchigami S; Ogane T; Takada S
    Sci Rep; 2023 Jan; 13(1):129. PubMed ID: 36599879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of topographic and three-dimensional atomic force microscopy images of biopolymers by calculating forces.
    Sumikama T
    Biophys Rev; 2023 Dec; 15(6):2059-2064. PubMed ID: 38192341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy.
    Sigdel KP; Wilt LA; Marsh BP; Roberts AG; King GM
    Biochem Pharmacol; 2018 Oct; 156():302-311. PubMed ID: 30121251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated vertical drift correction algorithm for AFM images based on morphology prediction.
    Wu Y; Fang Y; Fan Z; Wang C; Liu C
    Micron; 2021 Jan; 140():102950. PubMed ID: 33096453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies.
    Chitty C; Kuliga K; Xue WF
    Biochem Soc Trans; 2024 Apr; 52(2):761-771. PubMed ID: 38600027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure.
    Niina T; Matsunaga Y; Takada S
    PLoS Comput Biol; 2021 Jul; 17(7):e1009215. PubMed ID: 34283829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation algorithm for B-DNA.
    Howell SC; Qiu X; Curtis JE
    J Comput Chem; 2016 Nov; 37(29):2553-63. PubMed ID: 27671358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: creation of an oncology database.
    Papadimitroulas P; Loudos G; Le Maitre A; Hatt M; Tixier F; Efthimiou N; Nikiforidis GC; Visvikis D; Kagadis GC
    Med Phys; 2013 Nov; 40(11):112506. PubMed ID: 24320465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.
    Moreno C; Stetsovych O; Shimizu TK; Custance O
    Nano Lett; 2015 Apr; 15(4):2257-62. PubMed ID: 25756297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple subunit fitting into a low-resolution density map of a macromolecular complex using a gaussian mixture model.
    Kawabata T
    Biophys J; 2008 Nov; 95(10):4643-58. PubMed ID: 18708469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.