These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 31472187)

  • 1. A translational framework for peripheral nerve stimulating electrodes: Reviewing the journey from concept to clinic.
    Charkhkar H; Christie BP; Pinault GJ; Tyler DJ; Triolo RJ
    J Neurosci Methods; 2019 Dec; 328():108414. PubMed ID: 31472187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation.
    Schiavone G; Kang X; Fallegger F; Gandar J; Courtine G; Lacour SP
    Neuron; 2020 Oct; 108(2):238-258. PubMed ID: 33120021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing.
    Kim H; Dingle AM; Ness JP; Baek DH; Bong J; Lee IK; Shulzhenko NO; Zeng W; Israel JS; Pisaniello JA; Millevolte AXT; Park DW; Suminski AJ; Jung YH; Williams JC; Poore SO; Ma Z
    J Neurosci Methods; 2020 Apr; 336():108602. PubMed ID: 31981569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".
    Christie BP; Freeberg M; Memberg WD; Pinault GJC; Hoyen HA; Tyler DJ; Triolo RJ
    J Neuroeng Rehabil; 2017 Jul; 14(1):70. PubMed ID: 28693584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging Frontier of Peripheral Nerve and Organ Interfaces.
    Shahriari D; Rosenfeld D; Anikeeva P
    Neuron; 2020 Oct; 108(2):270-285. PubMed ID: 33120023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural signal recording and processing in somatic neuroprosthetic applications. A review.
    Raspopovic S; Cimolato A; Panarese A; Vallone F; Del Valle J; Micera S; Navarro X
    J Neurosci Methods; 2020 May; 337():108653. PubMed ID: 32114143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different clinical electrodes achieve similar electrical nerve conduction block.
    Boger A; Bhadra N; Gustafson KJ
    J Neural Eng; 2013 Oct; 10(5):056016. PubMed ID: 23986089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural prostheses in clinical practice: biomedical microsystems in neurological rehabilitation.
    Stieglitz T
    Acta Neurochir Suppl; 2007; 97(Pt 1):411-8. PubMed ID: 17691404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tutorial: a computational framework for the design and optimization of peripheral neural interfaces.
    Romeni S; Valle G; Mazzoni A; Micera S
    Nat Protoc; 2020 Oct; 15(10):3129-3153. PubMed ID: 32989306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microneurography as a minimally invasive method to assess target engagement during neuromodulation.
    Verma N; Knudsen B; Gholston A; Skubal A; Blanz S; Settell M; Frank J; Trevathan J; Ludwig K
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36898148
    [No Abstract]   [Full Text] [Related]  

  • 11. Spatiotemporal characteristics of neural activity in tibial nerves with carbon nanotube yarn electrodes.
    Yu X; Su JY; Guo JY; Zhang XH; Li RH; Chai XY; Chen Y; Zhang DG; Wang JG; Sui XH; Durand DM
    J Neurosci Methods; 2019 Dec; 328():108450. PubMed ID: 31577919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional interfaces with the peripheral nervous system.
    Micera S; Navarro X
    Int Rev Neurobiol; 2009; 86():23-38. PubMed ID: 19607988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability.
    Luan L; Robinson JT; Aazhang B; Chi T; Yang K; Li X; Rathore H; Singer A; Yellapantula S; Fan Y; Yu Z; Xie C
    Neuron; 2020 Oct; 108(2):302-321. PubMed ID: 33120025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current challenges to the clinical translation of brain machine interface technology.
    Lu CW; Patil PG; Chestek CA
    Int Rev Neurobiol; 2012; 107():137-60. PubMed ID: 23206681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model to design neural interfaces for lower-limb sensory neuroprostheses.
    Zelechowski M; Valle G; Raspopovic S
    J Neuroeng Rehabil; 2020 Feb; 17(1):24. PubMed ID: 32075654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review.
    Yildiz KA; Shin AY; Kaufman KR
    J Neuroeng Rehabil; 2020 Mar; 17(1):43. PubMed ID: 32151268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerative Electrode Interfaces for Neural Prostheses.
    Thompson CH; Zoratti MJ; Langhals NB; Purcell EK
    Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated interface for peripheral neural system recording and stimulation: system design, electrical tests and in-vivo results.
    Carboni C; Bisoni L; Carta N; Puddu R; Raspopovic S; Navarro X; Raffo L; Barbaro M
    Biomed Microdevices; 2016 Apr; 18(2):35. PubMed ID: 27007860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft, Implantable Bioelectronic Interfaces for Translational Research.
    Schiavone G; Fallegger F; Kang X; Barra B; Vachicouras N; Roussinova E; Furfaro I; Jiguet S; Seáñez I; Borgognon S; Rowald A; Li Q; Qin C; Bézard E; Bloch J; Courtine G; Capogrosso M; Lacour SP
    Adv Mater; 2020 Apr; 32(17):e1906512. PubMed ID: 32173913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.