These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Neural prostheses in clinical practice: biomedical microsystems in neurological rehabilitation. Stieglitz T Acta Neurochir Suppl; 2007; 97(Pt 1):411-8. PubMed ID: 17691404 [TBL] [Abstract][Full Text] [Related]
9. Tutorial: a computational framework for the design and optimization of peripheral neural interfaces. Romeni S; Valle G; Mazzoni A; Micera S Nat Protoc; 2020 Oct; 15(10):3129-3153. PubMed ID: 32989306 [TBL] [Abstract][Full Text] [Related]
10. Microneurography as a minimally invasive method to assess target engagement during neuromodulation. Verma N; Knudsen B; Gholston A; Skubal A; Blanz S; Settell M; Frank J; Trevathan J; Ludwig K J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36898148 [No Abstract] [Full Text] [Related]
11. Spatiotemporal characteristics of neural activity in tibial nerves with carbon nanotube yarn electrodes. Yu X; Su JY; Guo JY; Zhang XH; Li RH; Chai XY; Chen Y; Zhang DG; Wang JG; Sui XH; Durand DM J Neurosci Methods; 2019 Dec; 328():108450. PubMed ID: 31577919 [TBL] [Abstract][Full Text] [Related]
12. Bidirectional interfaces with the peripheral nervous system. Micera S; Navarro X Int Rev Neurobiol; 2009; 86():23-38. PubMed ID: 19607988 [TBL] [Abstract][Full Text] [Related]
13. Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Luan L; Robinson JT; Aazhang B; Chi T; Yang K; Li X; Rathore H; Singer A; Yellapantula S; Fan Y; Yu Z; Xie C Neuron; 2020 Oct; 108(2):302-321. PubMed ID: 33120025 [TBL] [Abstract][Full Text] [Related]
14. Current challenges to the clinical translation of brain machine interface technology. Lu CW; Patil PG; Chestek CA Int Rev Neurobiol; 2012; 107():137-60. PubMed ID: 23206681 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406 [TBL] [Abstract][Full Text] [Related]
16. A computational model to design neural interfaces for lower-limb sensory neuroprostheses. Zelechowski M; Valle G; Raspopovic S J Neuroeng Rehabil; 2020 Feb; 17(1):24. PubMed ID: 32075654 [TBL] [Abstract][Full Text] [Related]
17. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. Yildiz KA; Shin AY; Kaufman KR J Neuroeng Rehabil; 2020 Mar; 17(1):43. PubMed ID: 32151268 [TBL] [Abstract][Full Text] [Related]
18. Regenerative Electrode Interfaces for Neural Prostheses. Thompson CH; Zoratti MJ; Langhals NB; Purcell EK Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660 [TBL] [Abstract][Full Text] [Related]
19. An integrated interface for peripheral neural system recording and stimulation: system design, electrical tests and in-vivo results. Carboni C; Bisoni L; Carta N; Puddu R; Raspopovic S; Navarro X; Raffo L; Barbaro M Biomed Microdevices; 2016 Apr; 18(2):35. PubMed ID: 27007860 [TBL] [Abstract][Full Text] [Related]