These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 31472232)

  • 1. Autophagy as a mechanism for anti-angiogenic therapy resistance.
    Chandra A; Rick J; Yagnik G; Aghi MK
    Semin Cancer Biol; 2020 Nov; 66():75-88. PubMed ID: 31472232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy.
    Hu YL; Jahangiri A; Delay M; Aghi MK
    Cancer Res; 2012 Sep; 72(17):4294-9. PubMed ID: 22915758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia-induced tumor cell autophagy mediates resistance to anti-angiogenic therapy.
    Hu YL; Jahangiri A; De Lay M; Aghi MK
    Autophagy; 2012 Jun; 8(6):979-81. PubMed ID: 22714142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies.
    Rapisarda A; Melillo G
    Drug Resist Updat; 2009 Jun; 12(3):74-80. PubMed ID: 19394890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-Angiogenic Therapy: Current Challenges and Future Perspectives.
    Lopes-Coelho F; Martins F; Pereira SA; Serpa J
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33916438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the tumor stroma in resistance to anti-angiogenic therapy.
    Huijbers EJ; van Beijnum JR; Thijssen VL; Sabrkhany S; Nowak-Sliwinska P; Griffioen AW
    Drug Resist Updat; 2016 Mar; 25():26-37. PubMed ID: 27155374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vessel co-option and resistance to anti-angiogenic therapy.
    Kuczynski EA; Reynolds AR
    Angiogenesis; 2020 Feb; 23(1):55-74. PubMed ID: 31865479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies.
    Shojaei F; Ferrara N
    Drug Resist Updat; 2008 Dec; 11(6):219-30. PubMed ID: 18948057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trends and Challenges in Tumor Anti-Angiogenic Therapies.
    Jászai J; Schmidt MHH
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redundant angiogenic signaling and tumor drug resistance.
    Gacche RN; Assaraf YG
    Drug Resist Updat; 2018 Jan; 36():47-76. PubMed ID: 29499837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modes of resistance to anti-angiogenic therapy.
    Bergers G; Hanahan D
    Nat Rev Cancer; 2008 Aug; 8(8):592-603. PubMed ID: 18650835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer.
    Georganaki M; van Hooren L; Dimberg A
    Front Immunol; 2018; 9():3081. PubMed ID: 30627131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy.
    Saravanan S; Vimalraj S; Pavani K; Nikarika R; Sumantran VN
    Life Sci; 2020 Jul; 252():117670. PubMed ID: 32298741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.
    Gacche RN; Meshram RJ
    Prog Biophys Mol Biol; 2013 Nov; 113(2):333-54. PubMed ID: 24139944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies.
    Hu-Lowe DD; Chen E; Zhang L; Watson KD; Mancuso P; Lappin P; Wickman G; Chen JH; Wang J; Jiang X; Amundson K; Simon R; Erbersdobler A; Bergqvist S; Feng Z; Swanson TA; Simmons BH; Lippincott J; Casperson GF; Levin WJ; Stampino CG; Shalinsky DR; Ferrara KW; Fiedler W; Bertolini F
    Cancer Res; 2011 Feb; 71(4):1362-73. PubMed ID: 21212415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heparanase: From basic research to therapeutic applications in cancer and inflammation.
    Vlodavsky I; Singh P; Boyango I; Gutter-Kapon L; Elkin M; Sanderson RD; Ilan N
    Drug Resist Updat; 2016 Nov; 29():54-75. PubMed ID: 27912844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic paradigm of dual targeting VEGF and PDGF for effectively treating FGF-2 off-target tumors.
    Hosaka K; Yang Y; Seki T; Du Q; Jing X; He X; Wu J; Zhang Y; Morikawa H; Nakamura M; Scherzer M; Sun X; Xu Y; Cheng T; Li X; Liu X; Li Q; Liu Y; Hong A; Chen Y; Cao Y
    Nat Commun; 2020 Jul; 11(1):3704. PubMed ID: 32709869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic application of anti-angiogenic nanomaterials in cancers.
    Mukherjee S; Patra CR
    Nanoscale; 2016 Jul; 8(25):12444-70. PubMed ID: 27067119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of angiogenesis and the angiogenesis/invasion shift.
    Bikfalvi A; Moenner M; Javerzat S; North S; Hagedorn M
    Biochem Soc Trans; 2011 Dec; 39(6):1560-4. PubMed ID: 22103487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment.
    Rani V; Prabhu A
    Curr Pharm Des; 2021; 27(7):919-931. PubMed ID: 33006535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.