These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31472248)

  • 1. Development of accurate human head models for personalized electromagnetic dosimetry using deep learning.
    Rashed EA; Gomez-Tames J; Hirata A
    Neuroimage; 2019 Nov; 202():116132. PubMed ID: 31472248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of segmentation accuracy in structural MR head scans on electric field computation for TMS and tES.
    Rashed EA; Gomez-Tames J; Hirata A
    Phys Med Biol; 2021 Mar; 66(6):064002. PubMed ID: 33524957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning-Based Development of Personalized Human Head Model With Non-Uniform Conductivity for Brain Stimulation.
    Rashed EA; Gomez-Tames J; Hirata A
    IEEE Trans Med Imaging; 2020 Jul; 39(7):2351-2362. PubMed ID: 31995479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time estimation of electric fields induced by transcranial magnetic stimulation with deep neural networks.
    Yokota T; Maki T; Nagata T; Murakami T; Ugawa Y; Laakso I; Hirata A; Hontani H
    Brain Stimul; 2019; 12(6):1500-1507. PubMed ID: 31262697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling.
    Puonti O; Van Leemput K; Saturnino GB; Siebner HR; Madsen KH; Thielscher A
    Neuroimage; 2020 Oct; 219():117044. PubMed ID: 32534963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate and robust segmentation of neuroanatomy in T1-weighted MRI by combining spatial priors with deep convolutional neural networks.
    Novosad P; Fonov V; Collins DL;
    Hum Brain Mapp; 2020 Feb; 41(2):309-327. PubMed ID: 31633863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
    Hoseini F; Shahbahrami A; Bayat P
    J Digit Imaging; 2018 Oct; 31(5):738-747. PubMed ID: 29488179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-end semantic segmentation of personalized deep brain structures for non-invasive brain stimulation.
    Rashed EA; Gomez-Tames J; Hirata A
    Neural Netw; 2020 May; 125():233-244. PubMed ID: 32151914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-based estimation of dielectric properties and tissue density in head models for personalized radio-frequency dosimetry.
    Rashed EA; Diao Y; Hirata A
    Phys Med Biol; 2020 Mar; 65(6):065001. PubMed ID: 32023556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-automated generation of individual computational models of the human head and torso from MR images.
    Kalloch B; Bode J; Kozlov M; Pampel A; Hlawitschka M; Sehm B; Villringer A; Möller HE; Bazin PL
    Magn Reson Med; 2019 Mar; 81(3):2090-2105. PubMed ID: 30230021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.
    Khalili N; Lessmann N; Turk E; Claessens N; Heus R; Kolk T; Viergever MA; Benders MJNL; Išgum I
    Magn Reson Imaging; 2019 Dec; 64():77-89. PubMed ID: 31181246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art.
    Nielsen JD; Madsen KH; Puonti O; Siebner HR; Bauer C; Madsen CG; Saturnino GB; Thielscher A
    Neuroimage; 2018 Jul; 174():587-598. PubMed ID: 29518567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.
    Zhang W; Li R; Deng H; Wang L; Lin W; Ji S; Shen D
    Neuroimage; 2015 Mar; 108():214-24. PubMed ID: 25562829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculating the induced electromagnetic fields in real human head by deep transcranial magnetic stimulation.
    Lu M; Ueno S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():795-8. PubMed ID: 24109807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network.
    Cui S; Mao L; Jiang J; Liu C; Xiong S
    J Healthc Eng; 2018; 2018():4940593. PubMed ID: 29755716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation.
    Salvador R; Mekonnen A; Ruffini G; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2073-6. PubMed ID: 21095946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ICVSIE: A General Purpose Integral Equation Method for Bio-Electromagnetic Analysis.
    Gomez LJ; Yucel AC; Michielssen E
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):565-574. PubMed ID: 28534754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.