These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31472251)

  • 1. Frontal cortex differentiates between free and imposed target selection in multiple-target search.
    Ort E; Fahrenfort JJ; Reeder R; Pollmann S; Olivers CNL
    Neuroimage; 2019 Nov; 202():116133. PubMed ID: 31472251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of Free Choice Reveals the Cost of Having to Search for More Than One Object.
    Ort E; Fahrenfort JJ; Olivers CNL
    Psychol Sci; 2017 Aug; 28(8):1137-1147. PubMed ID: 28661761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age.
    Madden DJ; Parks EL; Tallman CW; Boylan MA; Hoagey DA; Cocjin SB; Johnson MA; Chou YH; Potter GG; Chen NK; Packard LE; Siciliano RE; Monge ZA; Diaz MT
    Hum Brain Mapp; 2017 Apr; 38(4):2128-2149. PubMed ID: 28052456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous and discrete representations of feature-based attentional priority in human frontoparietal network.
    Gong M; Liu T
    Cogn Neurosci; 2020 Jan; 11(1-2):47-59. PubMed ID: 30922203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of free choice reveals the cost of multiple-target search within and across feature dimensions.
    Ort E; Fahrenfort JJ; Olivers CNL
    Atten Percept Psychophys; 2018 Nov; 80(8):1904-1917. PubMed ID: 30088257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta and Theta Oscillations Differentially Support Free Versus Forced Control over Multiple-Target Search.
    van Driel J; Ort E; Fahrenfort JJ; Olivers CNL
    J Neurosci; 2019 Feb; 39(9):1733-1743. PubMed ID: 30617208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual Simultaneity Judgments Activate a Bilateral Frontoparietal Timing System.
    Hanayik T; Yourganov G; Newman-Norlund R; Gibson M; Rorden C
    J Cogn Neurosci; 2019 Mar; 31(3):431-441. PubMed ID: 30457918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Neural Mechanism of Number Line Bisection: A fMRI study.
    Liu D; Zhou D; Li M; Li M; Dong W; Verguts T; Chen Q
    Neuropsychologia; 2019 Jun; 129():37-46. PubMed ID: 30885641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory and visual connectivity gradients in frontoparietal cortex.
    Braga RM; Hellyer PJ; Wise RJ; Leech R
    Hum Brain Mapp; 2017 Jan; 38(1):255-270. PubMed ID: 27571304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biased Neural Representation of Feature-Based Attention in the Human Frontoparietal Network.
    Gong M; Liu T
    J Neurosci; 2020 Oct; 40(43):8386-8395. PubMed ID: 33004380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network.
    Jarvstad A; Gilchrist ID
    J Neurosci; 2019 Mar; 39(13):2497-2508. PubMed ID: 30683684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the dorsal attention network in distracter suppression based on features.
    Lanssens A; Pizzamiglio G; Mantini D; Gillebert CR
    Cogn Neurosci; 2020 Jan; 11(1-2):37-46. PubMed ID: 31674886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual feature and conjunction searches of equal difficulty engage only partially overlapping frontoparietal networks.
    Donner TH; Kettermann A; Diesch E; Ostendorf F; Villringer A; Brandt SA
    Neuroimage; 2002 Jan; 15(1):16-25. PubMed ID: 11771970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.
    Meyer KN; Du F; Parks E; Hopfinger JB
    Neuropsychologia; 2018 Mar; 111():307-316. PubMed ID: 29425803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.
    Woolgar A; Williams MA; Rich AN
    Neuroimage; 2015 Apr; 109():429-37. PubMed ID: 25583612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the human frontal eye field and multiple parietal areas in covert visual selection during conjunction search.
    Donner T; Kettermann A; Diesch E; Ostendorf F; Villringer A; Brandt SA
    Eur J Neurosci; 2000 Sep; 12(9):3407-14. PubMed ID: 10998123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The same, but different: Preserved distractor suppression in old age is implemented through an age-specific reactive ventral fronto-parietal network.
    Ashinoff BK; Mayhew SD; Mevorach C
    Hum Brain Mapp; 2020 Oct; 41(14):3938-3955. PubMed ID: 32573907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal patterns of cognitive control revealed with simultaneous electroencephalography and functional magnetic resonance imaging.
    Hinault T; Larcher K; Zazubovits N; Gotman J; Dagher A
    Hum Brain Mapp; 2019 Jan; 40(1):80-97. PubMed ID: 30259592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.