These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31472251)

  • 21. Connectivity of Frontoparietal Regions Reveals Executive Attention and Consciousness Interactions.
    MartĂ­n-Signes M; Paz-Alonso PM; Chica AB
    Cereb Cortex; 2019 Dec; 29(11):4539-4550. PubMed ID: 30590403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: Dissociating prior from posterior temporal probabilities with fMRI.
    Coull JT; Cotti J; Vidal F
    Neuroimage; 2016 Nov; 141():40-51. PubMed ID: 27431757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control.
    Berry AS; Sarter M; Lustig C
    J Cogn Neurosci; 2017 Jul; 29(7):1212-1225. PubMed ID: 28253080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes.
    Cooper PS; Wong AS; Fulham WR; Thienel R; Mansfield E; Michie PT; Karayanidis F
    Neuroimage; 2015 Mar; 108():354-63. PubMed ID: 25528657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differences in theta coherence between spatial and nonspatial attention using intracranial electroencephalographic signals in humans.
    Park YM; Park J; Baek JH; Kim SI; Kim IY; Kang JK; Jang DP
    Hum Brain Mapp; 2019 Jun; 40(8):2336-2346. PubMed ID: 30648326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural correlates of the attentional blink.
    Marois R; Chun MM; Gore JC
    Neuron; 2000 Oct; 28(1):299-308. PubMed ID: 11087002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV
    Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic interactions of the cortical networks during thought suppression.
    Aso T; Nishimura K; Kiyonaka T; Aoki T; Inagawa M; Matsuhashi M; Tobinaga Y; Fukuyama H
    Brain Behav; 2016 Aug; 6(8):e00503. PubMed ID: 27547504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception.
    Brascamp J; Blake R; Knapen T
    Nat Neurosci; 2015 Nov; 18(11):1672-8. PubMed ID: 26436901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neural circuitry underlying the executive control of auditory spatial attention.
    Wu CT; Weissman DH; Roberts KC; Woldorff MG
    Brain Res; 2007 Feb; 1134(1):187-98. PubMed ID: 17204249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation in a frontoparietal cortical network underlies individual differences in the performance of an embedded figures task.
    Walter E; Dassonville P
    PLoS One; 2011; 6(7):e20742. PubMed ID: 21799729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maintaining coherence of dynamic objects requires coordination of neural systems extended from anterior frontal to posterior parietal brain cortices.
    Imaruoka T; Saiki J; Miyauchi S
    Neuroimage; 2005 May; 26(1):277-84. PubMed ID: 15862228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.
    Heinen K; Feredoes E; Ruff CC; Driver J
    Neuropsychologia; 2017 May; 99():81-91. PubMed ID: 28254653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Top-down versus bottom-up attention differentially modulate frontal-parietal connectivity.
    Bowling JT; Friston KJ; Hopfinger JB
    Hum Brain Mapp; 2020 Mar; 41(4):928-942. PubMed ID: 31692192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opposite modulation of brain functional networks implicated at low vs. high demand of attention and working memory.
    Xu J; Calhoun VD; Pearlson GD; Potenza MN
    PLoS One; 2014; 9(1):e87078. PubMed ID: 24498021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation during endogenous orienting of visual attention using symbolic pointers in the human parietal and frontal cortices: a functional magnetic resonance imaging study.
    Kato C; Matsuo K; Matsuzawa M; Moriya T; Glover GH; Nakai T
    Neurosci Lett; 2001 Nov; 314(1-2):5-8. PubMed ID: 11698133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolating response inhibition in the brain: Parietal versus frontal contribution.
    Kolodny T; Mevorach C; Shalev L
    Cortex; 2017 Mar; 88():173-185. PubMed ID: 28142026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.