These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 31472353)
21. Remediation of arsenic-contaminated paddy soil by iron-modified biochar. Wu C; Cui M; Xue S; Li W; Huang L; Jiang X; Qian Z Environ Sci Pollut Res Int; 2018 Jul; 25(21):20792-20801. PubMed ID: 29756185 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of the stability of a nanoremediation strategy using barley plants. Gil-Díaz M; González A; Alonso J; Lobo MC J Environ Manage; 2016 Jan; 165():150-158. PubMed ID: 26431642 [TBL] [Abstract][Full Text] [Related]
23. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: Arsenic immobilization associated with iron transformation. Fan J; Chen X; Xu Z; Xu X; Zhao L; Qiu H; Cao X J Hazard Mater; 2020 Nov; 398():122901. PubMed ID: 32470770 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of different amendments to stabilize antimony in mining polluted soils. Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A Chemosphere; 2013 Feb; 90(8):2233-9. PubMed ID: 23121985 [TBL] [Abstract][Full Text] [Related]
25. Pristine and biochar-supported nano zero-valent iron to immobilize As, Zn and Pb in soil contaminated by smelting activities. Santos FHD; Soares MB; Alleoni LRF J Environ Manage; 2022 Nov; 321():116017. PubMed ID: 36027729 [TBL] [Abstract][Full Text] [Related]
26. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Cao Y; Zhang S; Zhong Q; Wang G; Xu X; Li T; Wang L; Jia Y; Li Y Ecotoxicol Environ Saf; 2018 Oct; 162():464-473. PubMed ID: 30015193 [TBL] [Abstract][Full Text] [Related]
27. Influence of nanoscale zero-valent iron on hydraulic conductivity of a residual clayey soil and modeling of the filtration parameter. Reginatto C; Cecchin I; Salvagni Heineck K; Thomé A; Reddy KR Environ Sci Pollut Res Int; 2020 Mar; 27(9):9288-9296. PubMed ID: 31916159 [TBL] [Abstract][Full Text] [Related]
28. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres. Xie Y; Cheng W; Tsang PE; Fang Z J Environ Manage; 2016 Jan; 166():478-83. PubMed ID: 26560640 [TBL] [Abstract][Full Text] [Related]
29. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J; Fang Z; Cheng W; Tsang PE; Zhao D Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497 [TBL] [Abstract][Full Text] [Related]
30. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Vítková M; Puschenreiter M; Komárek M Chemosphere; 2018 Jun; 200():217-226. PubMed ID: 29486361 [TBL] [Abstract][Full Text] [Related]
31. Residual impact of aged nZVI on heavy metal-polluted soils. Fajardo C; Gil-Díaz M; Costa G; Alonso J; Guerrero AM; Nande M; Lobo MC; Martín M Sci Total Environ; 2015 Dec; 535():79-84. PubMed ID: 25863574 [TBL] [Abstract][Full Text] [Related]
32. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966 [TBL] [Abstract][Full Text] [Related]
33. In Situ Fixation of Metal(loid)s in Contaminated Soils: A Comparison of Conventional, Opportunistic, and Engineered Soil Amendments. Mele E; Donner E; Juhasz AL; Brunetti G; Smith E; Betts AR; Castaldi P; Deiana S; Scheckel KG; Lombi E Environ Sci Technol; 2015 Nov; 49(22):13501-9. PubMed ID: 26457447 [TBL] [Abstract][Full Text] [Related]
34. Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Gomes HI; Dias-Ferreira C; Ribeiro AB; Pamukcu S Chemosphere; 2014 Mar; 99():171-9. PubMed ID: 24252496 [TBL] [Abstract][Full Text] [Related]
35. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation. Vanzetto GV; Thomé A Environ Pollut; 2019 Sep; 252(Pt A):74-83. PubMed ID: 31146240 [TBL] [Abstract][Full Text] [Related]
36. Soil properties determine the impact of nZVI on Lactuca sativa L and its rhizosphere. Gil-Díaz M; Álvarez-Aparicio J; Alonso J; Mancho C; Lobo MC; González J; García-Gonzalo P Environ Pollut; 2024 Jan; 341():122683. PubMed ID: 37827356 [TBL] [Abstract][Full Text] [Related]
37. Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron. Hou S; Wu B; Peng D; Wang Z; Wang Y; Xu H Environ Pollut; 2019 Sep; 252(Pt A):553-561. PubMed ID: 31181500 [TBL] [Abstract][Full Text] [Related]
38. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. An B; Zhao D J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304 [TBL] [Abstract][Full Text] [Related]
39. Immobilization of cadmium in contaminated soils using sulfidated nanoscale zero-valent iron: Effectiveness and remediation mechanism. Guo Y; Li X; Liang L; Lin Z; Su X; Zhang W J Hazard Mater; 2021 Oct; 420():126605. PubMed ID: 34329110 [TBL] [Abstract][Full Text] [Related]
40. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type. Gomes HI; Dias-Ferreira C; Ottosen LM; Ribeiro AB Chemosphere; 2015 Jul; 131():157-63. PubMed ID: 25841071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]