These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31472476)

  • 1. Spatiotemporal pattern of glucose in a microfluidic device depend on the porosity and permeability of the medium: A finite element study.
    Bonifácio ED; González-Torres LA; Meireles AB; Guimarães MV; Araujo CA
    Comput Methods Programs Biomed; 2019 Dec; 182():105039. PubMed ID: 31472476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A web-based application for automated quantification of chemical gradients induced in microfluidic devices.
    Cóndor M; Rüberg T; Borau C; Piles J; García-Aznar JM
    Comput Biol Med; 2018 Apr; 95():118-128. PubMed ID: 29494849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an Organ-on-a-Chip-Device for Study of Placental Pathologies.
    Mosavati B; Oleinikov AV; Du E
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.
    Li Y; Bøtker J; Rantanen J; Yang M; Bohr A
    Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphase flow experiment and simulation for cells-on-a-chip devices.
    Zhang M; Zheng A; Zheng ZC; Wang MZ
    Proc Inst Mech Eng H; 2019 Apr; 233(4):432-443. PubMed ID: 30929613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of Interstitial Fluid Pressure in Extracellular Matrix Hydrogels in Microfluidic Devices.
    Tien J; Li L; Ozsun O; Ekinci KL
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26158922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic assay for the on-chip electrochemical measurement of cell monolayer permeability.
    Wong JF; Simmons CA
    Lab Chip; 2019 Mar; 19(6):1060-1070. PubMed ID: 30778462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling human liver microphysiology on a chip through a finite element based design approach.
    Menezes PD; Gadegaard N; Natal Jorge RM; Pinto SIS
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3445. PubMed ID: 33522149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis.
    Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J
    PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
    Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D
    J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic gut-on-a-chip with three-dimensional villi structure.
    Shim KY; Lee D; Han J; Nguyen NT; Park S; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):37. PubMed ID: 28451924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix architecture plays a pivotal role in 3D osteoblast migration: The effect of interstitial fluid flow.
    Del Amo C; Olivares V; Cóndor M; Blanco A; Santolaria J; Asín J; Borau C; García-Aznar JM
    J Mech Behav Biomed Mater; 2018 Jul; 83():52-62. PubMed ID: 29677555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic chip to interface porous microneedles for ISF collection.
    Takeuchi K; Takama N; Kim B; Sharma K; Paul O; Ruther P
    Biomed Microdevices; 2019 Mar; 21(1):28. PubMed ID: 30847695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies.
    Sové RJ; Fraser GM; Goldman D; Ellis CG
    PLoS One; 2016; 11(11):e0166289. PubMed ID: 27829071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Design, simulation and application of multichannel microfluidic chip for cell migration].
    Li H; Yang X; Wu X; Li Z; Hong C; Liu Y; Zhu L; Yang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):128-138. PubMed ID: 35231974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.