These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Experimental Investigation of the Dynamical Modes of Four Pulse-Coupled Chemical Micro-Oscillators. Proskurkin IS; Smelov PS; Vanag VK Chemphyschem; 2019 Sep; 20(17):2162-2165. PubMed ID: 31380597 [TBL] [Abstract][Full Text] [Related]
4. A 'reader' unit of the chemical computer. Smelov PS; Vanag VK R Soc Open Sci; 2018 Jan; 5(1):171495. PubMed ID: 29410852 [TBL] [Abstract][Full Text] [Related]
5. Controllable switching between stable modes in a small network of pulse-coupled chemical oscillators. Smelov PS; Proskurkin IS; Vanag VK Phys Chem Chem Phys; 2019 Feb; 21(6):3033-3043. PubMed ID: 30672535 [TBL] [Abstract][Full Text] [Related]
6. Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators. Horváth V; Kutner DJ; Zeng MD; Epstein IR Chaos; 2019 Feb; 29(2):023128. PubMed ID: 30823715 [TBL] [Abstract][Full Text] [Related]
7. Novel modes of synchronization in star networks of coupled chemical oscillators. Mersing D; Tyler SA; Ponboonjaroenchai B; Tinsley MR; Showalter K Chaos; 2021 Sep; 31(9):093127. PubMed ID: 34598462 [TBL] [Abstract][Full Text] [Related]
8. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators. Ohno K; Ogawa T; Suematsu NJ Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237 [TBL] [Abstract][Full Text] [Related]
9. Dynamical regimes of four almost identical chemical oscillators coupled via pulse inhibitory coupling with time delay. Vanag VK; Smelov PS; Klinshov VV Phys Chem Chem Phys; 2016 Feb; 18(7):5509-20. PubMed ID: 26863079 [TBL] [Abstract][Full Text] [Related]
10. Dynamical regimes of four oscillators with excitatory pulse coupling. Safonov DA; Klinshov VV; Vanag VK Phys Chem Chem Phys; 2017 May; 19(19):12490-12501. PubMed ID: 28470273 [TBL] [Abstract][Full Text] [Related]
11. Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics. Torbensen K; Rossi F; Ristori S; Abou-Hassan A Lab Chip; 2017 Mar; 17(7):1179-1189. PubMed ID: 28239705 [TBL] [Abstract][Full Text] [Related]
12. "Cognitive" modes in small networks of almost identical chemical oscillators with pulsatile inhibitory coupling. Vanag VK Chaos; 2019 Mar; 29(3):033106. PubMed ID: 30927858 [TBL] [Abstract][Full Text] [Related]
13. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors. Fang Y; Yashin VV; Dickerson SJ; Balazs AC Chaos; 2018 May; 28(5):053106. PubMed ID: 29857671 [TBL] [Abstract][Full Text] [Related]
14. Distance dependent types of coupling of chemical micro-oscillators immersed in a water-in-oil microemulsion. Mallphanov IL; Vanag VK Phys Chem Chem Phys; 2021 Apr; 23(15):9130-9138. PubMed ID: 33885122 [TBL] [Abstract][Full Text] [Related]
15. Dynamic modes in a network of five oscillators with inhibitory all-to-all pulse coupling. Vanag VK; Yasuk VO Chaos; 2018 Mar; 28(3):033105. PubMed ID: 29604639 [TBL] [Abstract][Full Text] [Related]
16. How Does a Simple Network of Chemical Oscillators See the Japanese Flag? Gorecki J; Bose A Front Chem; 2020; 8():580703. PubMed ID: 33240845 [TBL] [Abstract][Full Text] [Related]
17. Designing self-powered materials systems that perform pattern recognition. Fang Y; Yashin VV; Levitan SP; Balazs AC Chem Commun (Camb); 2017 Jul; 53(55):7692-7706. PubMed ID: 28630968 [TBL] [Abstract][Full Text] [Related]
18. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation. Horvath V; Epstein IR Chaos; 2018 Apr; 28(4):045108. PubMed ID: 31906644 [TBL] [Abstract][Full Text] [Related]