These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31472538)

  • 1. Experimental study on nonlinear source-filter interaction using synthetic vocal fold models.
    Migimatsu K; Tokuda IT
    J Acoust Soc Am; 2019 Aug; 146(2):983. PubMed ID: 31472538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronized and Desynchronized Dynamics Observed from Physical Models of the Vocal and Ventricular Folds.
    Matsumoto T; Kanaya M; Matsushima D; Han C; Tokuda IT
    J Voice; 2024 May; 38(3):572-584. PubMed ID: 34903395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of level difference between left and right vocal folds on phonation: Physical experiment and theoretical study.
    Tokuda IT; Shimamura R
    J Acoust Soc Am; 2017 Aug; 142(2):482. PubMed ID: 28863607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments.
    Smith BL; Nemcek SP; Swinarski KA; Jiang JJ
    J Voice; 2013 May; 27(3):261-6. PubMed ID: 23490131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of vocal-ventricular fold oscillations in voice production.
    Matsumoto T; Kanaya M; Ishimura K; Tokuda IT
    J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.
    Maxfield L; Palaparthi A; Titze I
    J Voice; 2017 Mar; 31(2):149-156. PubMed ID: 27501922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z
    J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aeroacoustic source characterization in a physical model of phonation.
    McPhail MJ; Campo ET; Krane MH
    J Acoust Soc Am; 2019 Aug; 146(2):1230. PubMed ID: 31472595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of the effect of vocal-fold asymmetry on phonation.
    Xue Q; Mittal R; Zheng X; Bielamowicz S
    J Acoust Soc Am; 2010 Aug; 128(2):818-27. PubMed ID: 20707451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment.
    Luegmair G; Kniesburges S; Zimmermann M; Sutor A; Eysholdt U; Döllinger M
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The "Overdrive" Mode in the "Complete Vocal Technique": A Preliminary Study.
    Sundberg J; Bitelli M; Holmberg A; Laaksonen V
    J Voice; 2017 Sep; 31(5):528-535. PubMed ID: 28347616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of vocal tract formants in singing and nonperiodic phonation.
    Miller DG; Sulter AM; Schutte HK; Wolf RF
    J Voice; 1997 Mar; 11(1):1-11. PubMed ID: 9075171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V; Svancara P; Vasek M
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restraining vocal fold vertical motion reduces source-filter interaction in a two-mass model.
    Yoshinaga T; Zhang Z; Iida A
    JASA Express Lett; 2024 Mar; 4(3):. PubMed ID: 38426891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on Inspiratory Phonation Using Physical Model of the Vocal Folds.
    Hasegawa H; Nakagawa T; Noguchi K; Tokuda IT
    J Voice; 2024 Jul; 38(4):826-835. PubMed ID: 35227554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling source-source and source-filter acoustic interaction in birdsong.
    Laje R; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036218. PubMed ID: 16241559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.