These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31472579)

  • 1. Effect of viscosity on pseudo-Scholte wave propagation at liquid/porous medium interface.
    Qiu HM; Xia TD; Yu BQ; Chen WY
    J Acoust Soc Am; 2019 Aug; 146(2):927. PubMed ID: 31472579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation characteristics of interface waves between a porous medium and a sediment-containing two-phase fluid.
    Han Q; Qi L; Shan M; Yin C; Jiang X; Zhu C
    Ultrasonics; 2017 Nov; 81():73-80. PubMed ID: 28595165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast compressional wave attenuation and dispersion due to conversion scattering into slow shear waves in randomly heterogeneous porous media.
    Müller TM; Sahay PN
    J Acoust Soc Am; 2011 May; 129(5):2785-96. PubMed ID: 21568383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution equation for nonlinear Scholte waves.
    Gusev VE; Lauriks W; Thoen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):170-8. PubMed ID: 18244169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability effect on wave propagation in saturated porous medium.
    Li JX; Rezaee R; Müller TM
    J Acoust Soc Am; 2020 Feb; 147(2):911. PubMed ID: 32113257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinearity of acoustic waves at solid-liquid interfaces.
    Glorieux C; Van de Rostyne K; Gusev V; Gao W; Lauriks W; Thoen J
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):95-103. PubMed ID: 11831827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity.
    Tsiklauri D
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation and inversion of very-low-frequency seismo-acoustic fields in the South China Sea.
    Du S; Cao J; Zhou S; Qi Y; Jiang L; Zhang Y; Qiao C
    J Acoust Soc Am; 2020 Dec; 148(6):3992. PubMed ID: 33379898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave equations for porous media described by the Biot model.
    Chandrasekaran SN; Näsholm SP; Holm S
    J Acoust Soc Am; 2022 Apr; 151(4):2576. PubMed ID: 35461498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic wave dispersion in a cylindrical elastic tube filled with a viscous liquid.
    Elvira-Segura L
    Ultrasonics; 2000 Jan; 37(8):537-47. PubMed ID: 11243457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Theoretical Study of Love Wave Sensors Based on ZnO-Glass Layered Structures for Application to Liquid Environments.
    Caliendo C; Hamidullah M
    Biosensors (Basel); 2016 Dec; 6(4):. PubMed ID: 27918419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudo-interface Rayleigh wave on a permeable porous medium/vacuum interface.
    Gerasik V; Stastna M
    J Acoust Soc Am; 2014 May; 135(5):2625-33. PubMed ID: 24815246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudo interface waves observed at the fluid/porous-medium interface. A comparison of two methods.
    van Dalen KN; Drijkoningen GG; Smeulders DM
    J Acoust Soc Am; 2011 May; 129(5):2912-22. PubMed ID: 21568394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.
    Santos JE; Savioli GB
    J Acoust Soc Am; 2015 Nov; 138(5):3033-42. PubMed ID: 26627777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fracture compliance on wave propagation within a fluid-filled fracture.
    Nakagawa S; Korneev VA
    J Acoust Soc Am; 2014 Jun; 135(6):3186-97. PubMed ID: 24907784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of viscous liquid on SH-SAW in layered magnetoelectric structures.
    Yuan L; Du J; Ma T; Wang J
    Ultrasonics; 2013 Mar; 53(3):808-14. PubMed ID: 23259978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifurcation of the Biot slow wave in a porous medium.
    Edelman I
    J Acoust Soc Am; 2003 Jul; 114(1):90-7. PubMed ID: 12880023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflection and transmission of plane waves from a fluid-porous piezoelectric solid interface.
    Vashishth AK; Gupta V
    J Acoust Soc Am; 2011 Jun; 129(6):3690-701. PubMed ID: 21682394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Physical Mechanism of Acoustic Attenuation in Viscous Isotropic Solids.
    Fa L; Li L; Gong H; Chen W; Jiang J; You G; Liang J; Zhang Y; Zhao M
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method.
    Yang D
    Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.