These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31472603)

  • 1. Gradient magnet design for simultaneous detection of electrons and positrons in the intermediate MeV range.
    Tiwari G; Kupfer R; Jiao X; Gaul E; Hegelich BM
    Rev Sci Instrum; 2019 Aug; 90(8):083304. PubMed ID: 31472603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.
    McLaughlin DJ; Hogstrom KR; Carver RL; Gibbons JP; Shikhaliev PM; Matthews KL; Clarke T; Henderson A; Liang EP
    Med Phys; 2015 Sep; 42(9):5517-29. PubMed ID: 26328999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons.
    Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J
    Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high resolution, broad energy acceptance spectrometer for laser wakefield acceleration experiments.
    Sears CM; Cuevas SB; Schramm U; Schmid K; Buck A; Habs D; Krausz F; Veisz L
    Rev Sci Instrum; 2010 Jul; 81(7):073304. PubMed ID: 20687714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple magnetic spectrometer for radiotherapy electron beams.
    Deasy JO; Almond PR; McEllistrem MT; Ross CK
    Med Phys; 1994 Nov; 21(11):1703-14. PubMed ID: 7891630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a compact spectrometer for high-flux MeV gamma-ray beams.
    Corvan DJ; Sarri G; Zepf M
    Rev Sci Instrum; 2014 Jun; 85(6):065119. PubMed ID: 24985864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion calibration for the National Ignition Facility electron-positron-proton spectrometers for intense laser matter interactions.
    von der Linden J; Ramos-Méndez J; Faddegon B; Massin D; Fiksel G; Holder JP; Willingale L; Peebles J; Edwards MR; Chen H
    Rev Sci Instrum; 2021 Mar; 92(3):033516. PubMed ID: 33820046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch.
    Kojima S; Arikawa Y; Nishimura Y; Togawa H; Zhang Z; Ikenouchi T; Ozaki T; Morace A; Nagai T; Abe Y; Sakata S; Inoue H; Utsugi M; Nakai M; Nishimura H; Shiraga H; Kato R; Fujioka S; Azechi H
    Rev Sci Instrum; 2014 Nov; 85(11):11D634. PubMed ID: 25430210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of two compact permanent magnet spectrometers for high current electron linear induction accelerators.
    Burris-Mog TJ; Chavez MA; Espy MA; Manard MJ; Moir DC; Schillig JB; Trainham R; Volegov PL
    Rev Sci Instrum; 2018 Jul; 89(7):073303. PubMed ID: 30068099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the electron pencil beam redefinition algorithm to electron arc therapy.
    Chi PC; Hogstrom KR; Starkschall G; Boyd RA; Tucker SL; Antolak JA
    Med Phys; 2006 Jul; 33(7):2369-83. PubMed ID: 16898439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons.
    Beyreuther E; Enghardt W; Kaluza M; Karsch L; Laschinsky L; Lessmann E; Nicolai M; Pawelke J; Richter C; Sauerbrey R; Schlenvoigt HP; Baumann M
    Med Phys; 2010 Apr; 37(4):1392-400. PubMed ID: 20443460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.
    O'Shea TP; Foley MJ; Faddegon BA
    Med Phys; 2011 Jun; 38(6):3260-9. PubMed ID: 21815400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact broadband Compton spectroscopy used for intense laser-driven gamma rays.
    Yang T; Hu GY; Li MT; Lian CW; Zhang ZC; Luo W; Ma Y; Zheng J
    Rev Sci Instrum; 2021 May; 92(5):053546. PubMed ID: 34243255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beam characteristics and stopping-power ratios of small radiosurgery photon beams.
    Ding GX; Ding F
    Phys Med Biol; 2012 Sep; 57(17):5509-21. PubMed ID: 22872136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton beam behavior in a parallel configured MRI-proton therapy hybrid: Effects of time-varying gradient magnetic fields.
    Santos DM; Wachowicz K; Burke B; Fallone BG
    Med Phys; 2019 Feb; 46(2):822-838. PubMed ID: 30488968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting W
    Tessier F; Cojocaru CD; Ross CK
    Med Phys; 2018 Jan; 45(1):370-381. PubMed ID: 29131343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Mott polarimeter operating at MeV electron beam energies.
    Tioukine V; Aulenbacher K; Riehn E
    Rev Sci Instrum; 2011 Mar; 82(3):033303. PubMed ID: 21456728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.