These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31472649)

  • 1. SpraySyn-A standardized burner configuration for nanoparticle synthesis in spray flames.
    Schneider F; Suleiman S; Menser J; Borukhovich E; Wlokas I; Kempf A; Wiggers H; Schulz C
    Rev Sci Instrum; 2019 Aug; 90(8):085108. PubMed ID: 31472649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating spray flames for nanoparticle synthesis via tomographic imaging using multi-simultaneous measurements (TIMes) of emission.
    Foo CT; Unterberger A; Martins FJWA; Prenting MM; Schulz C; Mohri K
    Opt Express; 2022 Apr; 30(9):15524-15545. PubMed ID: 35473270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of a linear Hencken-type burner.
    Campbell MF; Bohlin GA; Schrader PE; Bambha RP; Kliewer CJ; Johansson KO; Michelsen HA
    Rev Sci Instrum; 2016 Nov; 87(11):115114. PubMed ID: 27910522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Determination of Droplet and Nanoparticle Size Distributions in Spray Flame Synthesis by Wide-Angle Light Scattering (WALS).
    Aßmann S; Münsterjohann B; Huber FJT; Will S
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Experimental Study on the Characteristics of Chemiluminescence in Coal Water Slurry Diffusion Flames Based on Hot Oxygen Burner Technology].
    Hu CH; Guo QH; Song XD; Gong Y; Yu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3127-33. PubMed ID: 30222256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral dynamics of pulsating methane-oxygen flames on a circular burner.
    Robbins K; Gorman M; Bowers J; Brockman R
    Chaos; 2004 Jun; 14(2):467-76. PubMed ID: 15189074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel multi-jet burner for hot flue gases of wide range of temperatures and compositions for optical diagnostics of solid fuels gasification/combustion.
    Weng W; Borggren J; Li B; Aldén M; Li Z
    Rev Sci Instrum; 2017 Apr; 88(4):045104. PubMed ID: 28456221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dataset of temperature, heat flux and infrared emission from flat premixed laminar methane-air flames.
    Pelzmann T; Robert É
    Data Brief; 2022 Jun; 42():108281. PubMed ID: 35651669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small porous-plug burner for studies of combustion chemistry and soot formation.
    Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA
    Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Numerical Study of Methane-Air Combustion Within Catalytic and Non-catalytic Porous Medium.
    Gao HB; Zong SC; Feng XB; Zhang CW
    Front Chem; 2020; 8():511792. PubMed ID: 33240839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels.
    Zhang J; Shaddix CR; Schefer RW
    Rev Sci Instrum; 2011 Jul; 82(7):074101. PubMed ID: 21806201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Response of Ultralean Combustion of CH
    Habib R; Yadollahi B; Saeed A; Doranehgard MH; Karimi N
    Energy Fuels; 2021 May; 35(10):8909-8921. PubMed ID: 34276125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A setup for studies of laminar flame under microwave irradiation.
    Nilsson EJK; Hurtig T; Ehn A; Fureby C
    Rev Sci Instrum; 2019 Nov; 90(11):113502. PubMed ID: 31779410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using In Situ Measurements to Experimentally Characterize TiO
    Franzelli B; Scouflaire P; Darabiha N
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flame synthesis of nanoparticles based on high flux electrostatic atomization burner.
    Chang M; Luo S; Li L; Liu C; Xie Q; Deng W; Park S; Zhou B
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39037300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-Infrared Polarization Spectroscopy Measurements of Species Concentrations and Temperature in a Low-Pressure Flame.
    Sahlberg AL; Hot D; Lyngbye-Pedersen R; Zhou J; Aldén M; Li Z
    Appl Spectrosc; 2019 Jun; 73(6):653-664. PubMed ID: 30556400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental/numerical investigation of non-reacting turbulent flow in a piloted premixed Bunsen burner.
    Pareja J; Lipkowicz T; Inanc E; Carter CD; Kempf A; Boxx I
    Exp Fluids; 2022; 63(1):33. PubMed ID: 35125637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies.
    Adeosun A; Huang Q; Li T; Gopan A; Wang X; Li S; Axelbaum RL
    Rev Sci Instrum; 2018 Feb; 89(2):025109. PubMed ID: 29495807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Computational Study of Extinguishment and Enhancement of Propane Cup-Burner Flames by Halon and Alternative Agents.
    Takahashi F; Katta V; Linteris G; Babushok V
    Fire Saf J; 2017; 91():. PubMed ID: 30983691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.