These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31472652)

  • 1. AC elastocaloric effect as a probe for thermodynamic signatures of continuous phase transitions.
    Ikeda MS; Straquadine JAW; Hristov AT; Worasaran T; Palmstrom JC; Sorensen M; Walmsley P; Fisher IR
    Rev Sci Instrum; 2019 Aug; 90(8):083902. PubMed ID: 31472652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastocaloric signature of nematic fluctuations.
    Ikeda MS; Worasaran T; Rosenberg EW; Palmstrom JC; Kivelson SA; Fisher IR
    Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34503998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-dependent sensitivity of AC elastocaloric effect measurements explored through analytical and numerical models.
    Straquadine JAW; Ikeda MS; Fisher IR
    Rev Sci Instrum; 2020 Aug; 91(8):083905. PubMed ID: 32872931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of elastoresistivity at finite frequency by amplitude demodulation.
    Hristov AT; Palmstrom JC; Straquadine JAW; Merz TA; Hwang HY; Fisher IR
    Rev Sci Instrum; 2018 Oct; 89(10):103901. PubMed ID: 30399873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Methods for Investigation of Shape Memory Based Elastocaloric Cooling Processes and Model Validation.
    Schmidt M; Ullrich J; Wieczorek A; Frenzel J; Eggeler G; Schütze A; Seelecke S
    J Vis Exp; 2016 May; (111):. PubMed ID: 27168093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys.
    Cong D; Xiong W; Planes A; Ren Y; Mañosa L; Cao P; Nie Z; Sun X; Yang Z; Hong X; Wang Y
    Phys Rev Lett; 2019 Jun; 122(25):255703. PubMed ID: 31347887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.
    Qian S; Geng Y; Wang Y; Pillsbury TE; Hada Y; Yamaguchi Y; Fujimoto K; Hwang Y; Radermacher R; Cui J; Yuki Y; Toyotake K; Takeuchi I
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device.
    Hou H; Finkel P; Staruch M; Cui J; Takeuchi I
    Nat Commun; 2018 Oct; 9(1):4075. PubMed ID: 30287833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastocaloric effect and superelastic stability in Ni-Mn-In-Co polycrystalline Heusler alloys: hysteresis and strain-rate effects.
    Lu B; Liu J
    Sci Rep; 2017 May; 7(1):2084. PubMed ID: 28522819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-Efficient Elastocaloric Cooling by Flexibly and Reversibly Transferring Interface in Magnetic Shape-Memory Alloys.
    Li Y; Zhao D; Liu J; Qian S; Li Z; Gan W; Chen X
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25438-25445. PubMed ID: 29989401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy.
    Li Y; Zhao D; Liu J
    Sci Rep; 2016 May; 6():25500. PubMed ID: 27138030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocaloric and elastocaloric effects in soft materials.
    Trček M; Lavrič M; Cordoyiannis G; Zalar B; Rožič B; Kralj S; Tzitzios V; Nounesis G; Kutnjak Z
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy.
    Kakeshita T; Xiao F; Fukuda T
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the B1g and B2g components of the elastoresistivity tensor for tetragonal materials via transverse resistivity configurations.
    Shapiro MC; Hristov AT; Palmstrom JC; Chu JH; Fisher IR
    Rev Sci Instrum; 2016 Jun; 87(6):063902. PubMed ID: 27370465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastocaloric effect associated with the martensitic transition in shape-memory alloys.
    Bonnot E; Romero R; Mañosa L; Vives E; Planes A
    Phys Rev Lett; 2008 Mar; 100(12):125901. PubMed ID: 18517885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanocaloric effects in shape memory alloys.
    Mañosa L; Planes A
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state cooling by elastocaloric polymer with uniform chain-lengths.
    Zhang S; Yang Q; Li C; Fu Y; Zhang H; Ye Z; Zhou X; Li Q; Wang T; Wang S; Zhang W; Xiong C; Wang Q
    Nat Commun; 2022 Jan; 13(1):9. PubMed ID: 35013283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastocaloric Effect in Carbon Nanotubes and Graphene.
    Lisenkov S; Herchig R; Patel S; Vaish R; Cuozzo J; Ponomareva I
    Nano Lett; 2016 Nov; 16(11):7008-7012. PubMed ID: 27709965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing.
    Hou H; Simsek E; Ma T; Johnson NS; Qian S; Cissé C; Stasak D; Al Hasan N; Zhou L; Hwang Y; Radermacher R; Levitas VI; Kramer MJ; Zaeem MA; Stebner AP; Ott RT; Cui J; Takeuchi I
    Science; 2019 Nov; 366(6469):1116-1121. PubMed ID: 31780556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression.
    Ahčin Ž; Dall'Olio S; Žerovnik A; Baškovič UŽ; Porenta L; Kabirifar P; Cerar J; Zupan S; Brojan M; Klemenc J; Tušek J
    Joule; 2022 Oct; 6(10):2338-2357. PubMed ID: 36312515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.