These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31472656)

  • 21. Designs of a miniaturized sapphire-loaded cavity for spaceborne hydrogen masers.
    Yang RF; Zhou TZ; Wang NR; Gao LS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):587-91. PubMed ID: 20211774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitigation of Lamplight-Induced Frequency Jumps in Space Rubidium Clocks.
    Formichella V; Camparo J; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):911-918. PubMed ID: 29856707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave Pulse-Coherent Technique-Based Clock With a Novel Magnetron-Type Cavity.
    Hao Q; Xue W; Li W; Xu F; Wang X; Guo W; Yun P; Zhang S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):873-878. PubMed ID: 31765309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice.
    Kundu I; Dean P; Valavanis A; Chen L; Li L; Cunningham JE; Linfield EH; Davies AG
    Opt Express; 2017 Jan; 25(1):486-496. PubMed ID: 28085842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications.
    Saeedi K; Szech M; Dluhy P; Salvail JZ; Morse KJ; Riemann H; Abrosimov NV; Nötzel N; Litvinenko KL; Murdin BN; Thewalt ML
    Sci Rep; 2015 May; 5():10493. PubMed ID: 25990870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stable microwave coaxial cavity plasma system at atmospheric pressure.
    Song H; Hong JM; Lee KH; Choi JJ
    Rev Sci Instrum; 2008 May; 79(5):054702. PubMed ID: 18513083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and realization of the microwave cavity in the PTB caesium atomic fountain clock CSF1.
    Schröder R; Hübner U; Griebsch D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):383-92. PubMed ID: 12322889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a compact cylindrical reaction cavity for a microwave dielectric heating system.
    Kim M; Kim K
    Rev Sci Instrum; 2012 Mar; 83(3):034703. PubMed ID: 22462944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designs of a microwave TE011 mode cavity for a space borne H-maser.
    Hartnett JG; Tobar ME; Stanwix PL; Morikawa T; Cros D; Piquet O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1638-43. PubMed ID: 16382616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photonic integrated circuit implementation of a sub-GHz-selectivity frequency comb filter for optical clock multiplication.
    Geng Z; Xie Y; Zhuang L; Burla M; Hoekman M; Roeloffzen CGH; Lowery AJ
    Opt Express; 2017 Oct; 25(22):27635-27645. PubMed ID: 29092234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimental study for the compact hydrogen maser with a TE111 septum cavity.
    Wang Q; Zhai Z; Zhang W; Lin C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):197-200. PubMed ID: 18238531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-stable clock laser system development towards space applications.
    Świerad D; Häfner S; Vogt S; Venon B; Holleville D; Bize S; Kulosa A; Bode S; Singh Y; Bongs K; Rasel EM; Lodewyck J; Le Targat R; Lisdat C; Sterr U
    Sci Rep; 2016 Sep; 6():33973. PubMed ID: 27667640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microwave frequency modulation in CW EPR at W-band using a loop-gap resonator.
    Hyde JS; Froncisz W; Sidabras JW; Camenisch TG; Anderson JR; Strangeway RA
    J Magn Reson; 2007 Apr; 185(2):259-63. PubMed ID: 17267251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.
    Reijerse E; Lendzian F; Isaacson R; Lubitz W
    J Magn Reson; 2012 Jan; 214(1):237-43. PubMed ID: 22196894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monolithically integrated 2.5  GHz extended cavity mode-locked ring laser with intracavity phase modulators.
    Latkowski S; Moskalenko V; Tahvili S; Augustin L; Smit M; Williams K; Bente E
    Opt Lett; 2015 Jan; 40(1):77-80. PubMed ID: 25531613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Compact Double-Folded Substrate Integrated Waveguide Re-Entrant Cavity for Highly Sensitive Humidity Sensing.
    Wei Z; Huang J; Li J; Li J; Liu X; Ni X
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of two stacked cylindrical dielectric resonators in a TE₁₀₂ microwave cavity for magnetic resonance spectroscopy.
    Mattar SM; Elnaggar SY
    J Magn Reson; 2011 Apr; 209(2):174-82. PubMed ID: 21300559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compact, low power radio frequency cavity for femtosecond electron microscopy.
    Lassise A; Mutsaers PH; Luiten OJ
    Rev Sci Instrum; 2012 Apr; 83(4):043705. PubMed ID: 22559537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rigorous analysis of highly tunable cylindrical transverse magnetic mode re-entrant cavities.
    Le Floch JM; Fan Y; Aubourg M; Cros D; Carvalho NC; Shan Q; Bourhill J; Ivanov EN; Humbert G; Madrangeas V; Tobar ME
    Rev Sci Instrum; 2013 Dec; 84(12):125114. PubMed ID: 24387475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.