These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31472835)

  • 1. Fluorescent complex coacervates of agar and in situ formed zein nanoparticles: Role of electrostatic forces.
    Kaushik P; Rawat K; Aswal VK; Kohlbrecher J; Bohidar HB
    Carbohydr Polym; 2019 Nov; 224():115150. PubMed ID: 31472835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing ratio dependent complex coacervation versus bicontinuous gelation of pectin with in situ formed zein nanoparticles.
    Kaushik P; Rawat K; Aswal VK; Kohlbrecher J; Bohidar HB
    Soft Matter; 2018 Aug; 14(31):6463-6475. PubMed ID: 30051132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of organic and inorganic salt environment on the complex coacervation of in situ formed protein nanoparticles and DNA.
    Pandey PK; Kaushik P; Rawat K; Bohidar HB
    Int J Biol Macromol; 2019 Feb; 122():1290-1296. PubMed ID: 30227204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent hydrophobicity induced complex coacervation of dsDNA and in situ formed zein nanoparticles.
    Pandey PK; Kaushik P; Rawat K; Aswal VK; Bohidar HB
    Soft Matter; 2017 Oct; 13(38):6784-6791. PubMed ID: 28819659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Coacervation and Overcharging during Interaction between Hydrophobic Zein and Hydrophilic Laponite in Aqueous Ethanol Solution.
    Tiwari P; Bharti I; Bohidar HB; Quadir S; Joshi MC; Arfin N
    ACS Omega; 2020 Dec; 5(51):33064-33074. PubMed ID: 33403268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquity of complex coacervation of DNA and proteins in aqueous solution.
    Kaushik P; Pandey PK; Aswal VK; Bohidar HB
    Soft Matter; 2020 Oct; 16(41):9525-9533. PubMed ID: 32966529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical surface charge dependent phase states of gelatin-bovine serum albumin dispersions close to their common pI.
    Pathak J; Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2014 Sep; 118(38):11161-71. PubMed ID: 25171436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Internal Structures in Gelatin-Bovine Serum Albumin/β-Lactoglobulin Gels and Coacervates.
    Pathak J; Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2016 Sep; 120(35):9506-12. PubMed ID: 27526229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates.
    Li X; Erni P; van der Gucht J; de Vries R
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.
    Boral S; Bohidar HB
    J Phys Chem B; 2010 Sep; 114(37):12027-35. PubMed ID: 20809576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural study of coacervation in protein-polyelectrolyte complexes.
    Chodankar S; Aswal VK; Kohlbrecher J; Vavrin R; Wagh AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031913. PubMed ID: 18851071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condensation, complex coacervation, and overcharging during DNA-gelatin interactions in aqueous solutions.
    Arfin N; Bohidar HB
    J Phys Chem B; 2012 Nov; 116(44):13192-9. PubMed ID: 23072460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex coacervation between beta-lactoglobulin and Acacia gum: a nucleation and growth mechanism.
    Sanchez C; Mekhloufi G; Renard D
    J Colloid Interface Sci; 2006 Jul; 299(2):867-73. PubMed ID: 16530214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates.
    Ghorbani Gorji S; Ghorbani Gorji E; Mohammadifar MA; Zargaraan A
    Int J Biol Macromol; 2014 Jun; 67():503-11. PubMed ID: 24565900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex coacervation of soybean protein isolate and chitosan.
    Huang GQ; Sun YT; Xiao JX; Yang J
    Food Chem; 2012 Nov; 135(2):534-9. PubMed ID: 22868125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers.
    Singh SS; Siddhanta AK; Meena R; Prasad K; Bandyopadhyay S; Bohidar HB
    Int J Biol Macromol; 2007 Jul; 41(2):185-92. PubMed ID: 17367849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates.
    Rumyantsev AM; Borisov OV; de Pablo JJ
    Macromolecules; 2023 Feb; 56(4):1713-1730. PubMed ID: 36874532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction and formation mechanism of binary complex between zein and propylene glycol alginate.
    Sun C; Dai L; Gao Y
    Carbohydr Polym; 2017 Feb; 157():1638-1649. PubMed ID: 27987878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex Coacervation Between Gelatin and Chia Mucilage as an Alternative of Encapsulating Agents.
    Hernández-Nava R; López-Malo A; Palou E; Ramírez-Corona N; Jiménez-Munguía MT
    J Food Sci; 2019 Jun; 84(6):1281-1287. PubMed ID: 31066918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.