These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31472858)

  • 41. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrating Graphene Oxide-Hydrogels and Electrical Stimulation for Controlled Neurotrophic Factor Encapsulation: A Promising Approach for Efficient Nerve Tissue Regeneration.
    Mendes AX; Caballero Aguilar L; do Nascimento AT; Duchi S; Charnley M; Nisbet DR; Quigley AF; Kapsa RMI; Moraes Silva S; Moulton SE
    ACS Appl Bio Mater; 2024 Jun; 7(6):4175-4192. PubMed ID: 38830774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits.
    Mosahebi A; Wiberg M; Terenghi G
    Tissue Eng; 2003 Apr; 9(2):209-18. PubMed ID: 12740084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth.
    Zhao Y; Wang Y; Niu C; Zhang L; Li G; Yang Y
    J Biomed Mater Res A; 2018 Jul; 106(7):1951-1964. PubMed ID: 29575695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biocompatible nanocomposite of TiO
    Cao L; Wu X; Wang Q; Wang J
    J Photochem Photobiol B; 2018 Jan; 178():440-446. PubMed ID: 29216567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of Schwann cell behaviour on RGD-functionalised bioabsorbable nanocomposite for peripheral nerve regeneration.
    Sedaghati T; Jell G; Seifalian A
    N Biotechnol; 2014 May; 31(3):203-13. PubMed ID: 24503165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration.
    Marino A; Tonda-Turo C; De Pasquale D; Ruini F; Genchi G; Nitti S; Cappello V; Gemmi M; Mattoli V; Ciardelli G; Ciofani G
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):386-395. PubMed ID: 27864151
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.
    Zheng L; Jiang X; Chen X; Fan H; Zhang X
    Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering].
    Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyaniline Functionalized Graphene Nanoelectrodes for the Regeneration of PC12 Cells via Electrical Stimulation.
    Zheng Z; Huang L; Yan L; Yuan F; Wang L; Wang K; Lawson T; Lin M; Liu Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022890
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration.
    Du Y; Ge J; Li Y; Ma PX; Lei B
    Biomaterials; 2018 Mar; 157():40-50. PubMed ID: 29241032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Injectable chitosan/gelatin/bioactive glass nanocomposite hydrogels for potential bone regeneration: In vitro and in vivo analyses.
    Moreira CDF; Carvalho SM; Florentino RM; França A; Okano BS; Rezende CMF; Mansur HS; Pereira MM
    Int J Biol Macromol; 2019 Jul; 132():811-821. PubMed ID: 30946907
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.
    Ning L; Xu Y; Chen X; Schreyer DJ
    J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells.
    Zhao Y; Gong J; Niu C; Wei Z; Shi J; Li G; Yang Y; Wang H
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2171-2185. PubMed ID: 28967299
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulus-dependent characteristics of Wharton's jelly mesenchymal stem cells (WJMSC) encapsulated in hydrogel microspheres.
    Ramesh A; Kanafi MM; Bhonde RR
    J Biomater Sci Polym Ed; 2014; 25(17):1946-61. PubMed ID: 25247724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration.
    Koosha M; Raoufi M; Moravvej H
    Colloids Surf B Biointerfaces; 2019 Jul; 179():270-279. PubMed ID: 30978614
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications.
    Ketabat F; Karkhaneh A; Mehdinavaz Aghdam R; Hossein Ahmadi Tafti S
    J Biomater Sci Polym Ed; 2017 Jun; 28(8):794-805. PubMed ID: 28278043
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of graphene on the structure, properties, electro-response behaviors of GO/PAA composite hydrogels and influence of electro-mechanical coupling on BMSC differentiation.
    Qiao K; Guo S; Zheng Y; Xu X; Meng H; Peng J; Fang Z; Xie Y
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():853-863. PubMed ID: 30274121
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering.
    Tong XF; Zhao FQ; Ren YZ; Zhang Y; Cui YL; Wang QS
    J Biomed Mater Res A; 2018 Dec; 106(12):3292-3302. PubMed ID: 30242952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.