BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31472860)

  • 1. Melt-processing of cellulose nanofibril/polylactide bionanocomposites via a sustainable polyethylene glycol-based carrier system.
    Cailloux J; Raquez JM; Lo Re G; Santana O; Bonnaud L; Dubois P; Maspoch ML
    Carbohydr Polym; 2019 Nov; 224():115188. PubMed ID: 31472860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polylactide cellulose-based nanocomposites.
    Vatansever E; Arslan D; Nofar M
    Int J Biol Macromol; 2019 Sep; 137():912-938. PubMed ID: 31284009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.
    Lu Y; Cueva MC; Lara-Curzio E; Ozcan S
    Carbohydr Polym; 2015 Oct; 131():208-17. PubMed ID: 26256177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R; Hwang SW
    J Food Sci; 2010 Oct; 75(8):N97-108. PubMed ID: 21535511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological and thermal properties of polylactide/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R
    J Food Sci; 2010 Mar; 75(2):N17-24. PubMed ID: 20492249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system.
    Kiziltas A; Nazari B; Erbas Kiziltas E; Gardner DJ; Han Y; Rushing TS
    Carbohydr Polym; 2016 Apr; 140():393-9. PubMed ID: 26876866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites.
    Vatansever E; Arslan D; Sarul DS; Kahraman Y; Nofar M
    Int J Biol Macromol; 2020 Jul; 154():276-290. PubMed ID: 32184137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing.
    Wang Q; Ji C; Sun L; Sun J; Liu J
    Molecules; 2020 May; 25(10):. PubMed ID: 32429191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials.
    Fujisawa S; Saito T; Kimura S; Iwata T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1541-6. PubMed ID: 23540813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils.
    Wang Q; Ji C; Sun J; Zhu Q; Liu J
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of diclofenac sodium from polylactide acid-based solid dispersions prepared by hot-melt extrusion.
    Chen R; Li G; Han A; Wu H; Guo S
    J Biomater Sci Polym Ed; 2016; 27(6):529-43. PubMed ID: 26786535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Properties and Molecular Degradation of Schizostachyum Brachycladum Bamboo Cellulose Nanofibre in PLA-Chitosan Bionanocomposites.
    Rizal S; Saharudin NI; Olaiya NG; Khalil HPSA; Haafiz MKM; Ikramullah I; Muksin U; Olaiya FG; Abdullah CK; Yahya EB
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33916094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites.
    Goffin AL; Raquez JM; Duquesne E; Siqueira G; Habibi Y; Dufresne A; Dubois P
    Biomacromolecules; 2011 Jul; 12(7):2456-65. PubMed ID: 21623629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.
    Ahmed J; Arfat YA; Castro-Aguirre E; Auras R
    Int J Biol Macromol; 2016 May; 86():885-92. PubMed ID: 26893045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application.
    Pal N; Banerjee S; Roy P; Pal K
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109956. PubMed ID: 31499971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review.
    Mokhena TC; Sadiku ER; Mochane MJ; Ray SS; John MJ; Mtibe A
    Carbohydr Polym; 2021 Dec; 273():118507. PubMed ID: 34560938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Performance PA 6/Cellulose Nanocomposites in the Interest of Industrial Scale Melt Processing.
    Sridhara PK; Vilaseca F
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ polycondensate-coated cellulose nanofiber heterostructure for polylactic acid-based composites with superior mechanical and thermal properties.
    Wang Q; Chen X; Zeng S; Chen P; Xu Y; Nie W; Xia R; Zhou Y
    Int J Biol Macromol; 2023 Jun; 240():124515. PubMed ID: 37085066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous nanocomposites of PEG-PLA/calcium phosphate: room-temperature synthesis and its application in drug delivery.
    Tang QL; Zhu YJ; Duan YR; Wang Q; Wang KW; Cao SW; Chen F; Wu J
    Dalton Trans; 2010 May; 39(18):4435-9. PubMed ID: 20422101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Admicellar Polymerization Coating of CNF Enhances Integration in Degradable Nanocomposites.
    Edlund U; Lagerberg T; Ă…lander E
    Biomacromolecules; 2019 Feb; 20(2):684-692. PubMed ID: 30301347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.