These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31472970)

  • 1. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models.
    Dorschky E; Nitschke M; Seifer AK; van den Bogert AJ; Eskofier BM
    J Biomech; 2019 Oct; 95():109278. PubMed ID: 31472970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on estimation of planar gait kinematics using minimal inertial measurement units and inverse kinematics.
    Hu X; Soh GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6911-4. PubMed ID: 25571585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating 3D kinematics and kinetics from virtual inertial sensor data through musculoskeletal movement simulations.
    Nitschke M; Dorschky E; Leyendecker S; Eskofier BM; Koelewijn AD
    Front Bioeng Biotechnol; 2024; 12():1285845. PubMed ID: 38628437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using inertial measurement units to estimate spine joint kinematics and kinetics during walking and running.
    Sibson BE; Banks JJ; Yawar A; Yegian AK; Anderson DE; Lieberman DE
    Sci Rep; 2024 Jan; 14(1):234. PubMed ID: 38168540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inertial measurement unit tracking system for body movement in comparison with optical tracking.
    Li R; Jumet B; Ren H; Song W; Tse ZTH
    Proc Inst Mech Eng H; 2020 Jul; 234(7):728-737. PubMed ID: 32419605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data.
    Benoussaad M; Sijobert B; Mombaur K; Coste CA
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of pelvis kinematics in level walking based on a single inertial sensor positioned close to the sacrum: validation on healthy subjects with stereophotogrammetric system.
    Buganè F; Benedetti MG; D'Angeli V; Leardini A
    Biomed Eng Online; 2014 Oct; 13():146. PubMed ID: 25336170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture.
    Karatsidis A; Bellusci G; Schepers HM; de Zee M; Andersen MS; Veltink PH
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pedestrian navigation based on a waist-worn inertial sensor.
    Alvarez JC; Alvarez D; López A; González RC
    Sensors (Basel); 2012; 12(8):10536-49. PubMed ID: 23112614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OpenSense: An open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations.
    Al Borno M; O'Day J; Ibarra V; Dunne J; Seth A; Habib A; Ong C; Hicks J; Uhlrich S; Delp S
    J Neuroeng Rehabil; 2022 Feb; 19(1):22. PubMed ID: 35184727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D gait analysis in children using wearable sensors: feasibility of predicting joint kinematics and kinetics with personalized machine learning models and inertial measurement units.
    Mohammadi Moghadam S; Ortega Auriol P; Yeung T; Choisne J
    Front Bioeng Biotechnol; 2024; 12():1372669. PubMed ID: 38572359
    [No Abstract]   [Full Text] [Related]  

  • 15. Gait kinematics based on inertial measurement units with the sensor-to-segment calibration and multibody optimization adapted to the patient's motor capacities, a pilot study.
    Pacher L; Carcreff L; Armand S; Chatellier C; Vauzelle R; Fradet L
    Gait Posture; 2024 Feb; 108():275-281. PubMed ID: 38171183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between Accelerometer and Gyroscope in Predicting Level-Ground Running Kinematics by Treadmill Running Kinematics Using a Single Wearable Sensor.
    Chow DHK; Tremblay L; Lam CY; Yeung AWY; Cheng WHW; Tse PTW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of foot placement and its variability with inertial sensors.
    Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    Gait Posture; 2013 Sep; 38(4):974-80. PubMed ID: 23810335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait.
    Remy CD; Thelen DG
    J Biomech Eng; 2009 Mar; 131(3):031005. PubMed ID: 19154064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.