These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 31472970)

  • 21. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models.
    Yang S; Laudanski A; Li Q
    Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertial sensor-based smoother for gait analysis.
    Suh YS
    Sensors (Basel); 2014 Dec; 14(12):24338-57. PubMed ID: 25526359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating dynamic gait stability using data from non-aligned inertial sensors.
    Bruijn SM; Ten Kate WR; Faber GS; Meijer OG; Beek PJ; van Dieën JH
    Ann Biomed Eng; 2010 Aug; 38(8):2588-93. PubMed ID: 20354902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An evaluation of inertial sensor technology in the discrimination of human gait.
    Little C; Lee JB; James DA; Davison K
    J Sports Sci; 2013; 31(12):1312-8. PubMed ID: 23679899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensional Lower-Limb Kinematics from Accelerometers and Gyroscopes with Simple and Minimal Functional Calibration Tasks: Validation on Asymptomatic Participants.
    Carcreff L; Payen G; Grouvel G; Massé F; Armand S
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inertial Sensor-Based Gait Recognition: A Review.
    Sprager S; Juric MB
    Sensors (Basel); 2015 Sep; 15(9):22089-127. PubMed ID: 26340634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture.
    Karatsidis A; Jung M; Schepers HM; Bellusci G; de Zee M; Veltink PH; Andersen MS
    Med Eng Phys; 2019 Mar; 65():68-77. PubMed ID: 30737118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Agreement of Gait Events Detection during Treadmill Backward Walking by Kinematic Data and Inertial Motion Units.
    Gottlieb U; Balasukumaran T; Hoffman JR; Springer S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data.
    Nitschke M; Marzilger R; Leyendecker S; Eskofier BM; Koelewijn AD
    PeerJ; 2023; 11():e14852. PubMed ID: 36778146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system.
    Nüesch C; Roos E; Pagenstert G; Mündermann A
    J Biomech; 2017 May; 57():32-38. PubMed ID: 28366438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of Lower Extremity Muscle Activity in Gait Using the Wearable Inertial Measurement Units and Neural Network.
    Khant M; Gouwanda D; Gopalai AA; Lim KH; Foong CC
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noninvasive Estimation of Joint Moments with Inertial Sensor System for Analysis of STS Rehabilitation Training.
    Liu K; Yan J; Liu Y; Ye M
    J Healthc Eng; 2018; 2018():6570617. PubMed ID: 29610656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features.
    Teufl W; Taetz B; Miezal M; Lorenz M; Pietschmann J; Jöllenbeck T; Fröhlich M; Bleser G
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.
    Miyajima S; Tanaka T; Imamura Y; Kusaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6716-9. PubMed ID: 26737834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.
    Picerno P
    Gait Posture; 2017 Jan; 51():239-246. PubMed ID: 27833057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.