BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31473013)

  • 1. Dynamic Metabolomics for Engineering Biology: Accelerating Learning Cycles for Bioproduction.
    Vavricka CJ; Hasunuma T; Kondo A
    Trends Biotechnol; 2020 Jan; 38(1):68-82. PubMed ID: 31473013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Scale
    Ando D; Garcia Martin H
    Methods Mol Biol; 2018; 1671():333-352. PubMed ID: 29170969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lessons from Two Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning.
    Opgenorth P; Costello Z; Okada T; Goyal G; Chen Y; Gin J; Benites V; de Raad M; Northen TR; Deng K; Deutsch S; Baidoo EEK; Petzold CJ; Hillson NJ; Garcia Martin H; Beller HR
    ACS Synth Biol; 2019 Jun; 8(6):1337-1351. PubMed ID: 31072100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics-based development of bioproduction processes toward industrial-scale production.
    Tanaka K; Bamba T; Kondo A; Hasunuma T
    Curr Opin Biotechnol; 2024 Feb; 85():103057. PubMed ID: 38154323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging automation and fundamental discovery into the design-build-test-learn cycle of nontraditional microbes.
    Gurdo N; Volke DC; Nikel PI
    Trends Biotechnol; 2022 Oct; 40(10):1148-1159. PubMed ID: 35410817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle.
    Meng X; Xu P; Tao F
    iScience; 2023 Jul; 26(7):107069. PubMed ID: 37426353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated Design-Build-Test-Learn Cycles for Consistent Comparison of Machine Learning Methods in Metabolic Engineering.
    van Lent P; Schmitz J; Abeel T
    ACS Synth Biol; 2023 Sep; 12(9):2588-2599. PubMed ID: 37616156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolomics and modelling approaches for systems metabolic engineering.
    Khanijou JK; Kulyk H; Bergès C; Khoo LW; Ng P; Yeo HC; Helmy M; Bellvert F; Chew W; Selvarajoo K
    Metab Eng Commun; 2022 Dec; 15():e00209. PubMed ID: 36281261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrated Computer-Aided Design and Manufacturing Workflow for Synthetic Biology.
    Oberortner E; Evans R; Meng X; Nath S; Plahar H; Simirenko L; Tarver A; Deutsch S; Hillson NJ; Cheng JF
    Methods Mol Biol; 2020; 2205():3-18. PubMed ID: 32809190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico, in vitro, and in vivo machine learning in synthetic biology and metabolic engineering.
    Faulon JL; Faure L
    Curr Opin Chem Biol; 2021 Dec; 65():85-92. PubMed ID: 34280705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Biology Meets Machine Learning.
    Sieow BF; De Sotto R; Seet ZRD; Hwang IY; Chang MW
    Methods Mol Biol; 2023; 2553():21-39. PubMed ID: 36227537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle.
    Pouvreau B; Vanhercke T; Singh S
    Plant Sci; 2018 Aug; 273():3-12. PubMed ID: 29907306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automating the design-build-test-learn cycle towards next-generation bacterial cell factories.
    Gurdo N; Volke DC; McCloskey D; Nikel PI
    N Biotechnol; 2023 May; 74():1-15. PubMed ID: 36736693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Applications for Mass Spectrometry-Based Metabolomics.
    Liebal UW; Phan ANT; Sudhakar M; Raman K; Blank LM
    Metabolites; 2020 Jun; 10(6):. PubMed ID: 32545768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications.
    Wu G; Yan Q; Jones JA; Tang YJ; Fong SS; Koffas MAG
    Trends Biotechnol; 2016 Aug; 34(8):652-664. PubMed ID: 26996613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. teemi: An open-source literate programming approach for iterative design-build-test-learn cycles in bioengineering.
    Petersen SD; Levassor L; Pedersen CM; Madsen J; Hansen LG; Zhang J; Haidar AK; Frandsen RJN; Keasling JD; Weber T; Sonnenschein N; K Jensen M
    PLoS Comput Biol; 2024 Mar; 20(3):e1011929. PubMed ID: 38457467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
    Stolfa G; Smonskey MT; Boniface R; Hachmann AB; Gulde P; Joshi AD; Pierce AP; Jacobia SJ; Campbell A
    Biotechnol J; 2018 Mar; 13(3):e1700227. PubMed ID: 29072373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant synthetic biology.
    Liu W; Stewart CN
    Trends Plant Sci; 2015 May; 20(5):309-317. PubMed ID: 25825364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.