These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31473823)

  • 1. Electronic structure properties of transition metal dichalcogenide nanotubes: a DFT benchmark.
    de Alencar Rocha R; da Cunha WF; Ribeiro LA
    J Mol Model; 2019 Aug; 25(9):290. PubMed ID: 31473823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling the layer-dependent electronic properties in transition-metal dichalcogenide heterostructures assisted by machine learning.
    Wang T; Tan X; Wei Y; Jin H
    Nanoscale; 2022 Feb; 14(6):2511-2520. PubMed ID: 35103742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers.
    Velický M; Donnelly GE; Hendren WR; McFarland S; Scullion D; DeBenedetti WJI; Correa GC; Han Y; Wain AJ; Hines MA; Muller DA; Novoselov KS; Abruña HD; Bowman RM; Santos EJG; Huang F
    ACS Nano; 2018 Oct; 12(10):10463-10472. PubMed ID: 30265515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions.
    Dybała F; Polak MP; Kopaczek J; Scharoch P; Wu K; Tongay S; Kudrawiec R
    Sci Rep; 2016 May; 6():26663. PubMed ID: 27215469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torsional strain engineering of transition metal dichalcogenide nanotubes: an
    Bhardwaj A; Sharma A; Suryanarayana P
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 34348245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-orbital effects in metal-dichalcogenide semiconducting monolayers.
    Reyes-Retana JA; Cervantes-Sodi F
    Sci Rep; 2016 Apr; 6():24093. PubMed ID: 27094967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the indirect-direct band gap transition in the MoS
    Wu HH; Meng Q; Huang H; Liu CT; Wang XL
    Phys Chem Chem Phys; 2018 Jan; 20(5):3608-3613. PubMed ID: 29340382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives.
    Samadi M; Sarikhani N; Zirak M; Zhang H; Zhang HL; Moshfegh AZ
    Nanoscale Horiz; 2018 Mar; 3(2):90-204. PubMed ID: 32254071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures.
    Sun Y; Wang Y; Chen JYC; Fujisawa K; Holder CF; Miller JT; Crespi VH; Terrones M; Schaak RE
    Nat Chem; 2020 Mar; 12(3):284-293. PubMed ID: 32094437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and electronic properties of defective 2D transition metal dichalcogenide heterostructures.
    Pecoraro A; Schiavo E; Maddalena P; Muñoz-García AB; Pavone M
    J Comput Chem; 2020 Aug; 41(22):1946-1955. PubMed ID: 32633886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties.
    Komsa HP; Krasheninnikov AV
    J Phys Chem Lett; 2012 Dec; 3(23):3652-6. PubMed ID: 26291001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torsional moduli of transition metal dichalcogenide nanotubes from first principles.
    Bhardwaj A; Sharma A; Suryanarayana P
    Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33827066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition-metal nitride halide dielectrics for transition-metal dichalcogenide transistors.
    Rostami Osanloo M; Saadat A; Van de Put ML; Laturia A; Vandenberghe WG
    Nanoscale; 2021 Dec; 14(1):157-165. PubMed ID: 34904618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2.
    Cunningham G; Hanlon D; McEvoy N; Duesberg GS; Coleman JN
    Nanoscale; 2015 Jan; 7(1):198-208. PubMed ID: 25408303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum wells formed in transition-metal dichalcogenide nanosheet-superlattices: stability and electronic structures from first principles.
    Su X; Zhang R; Guo C; Guo M; Ren Z
    Phys Chem Chem Phys; 2014 Jan; 16(4):1393-8. PubMed ID: 24296949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots.
    Zhang X; Lai Z; Liu Z; Tan C; Huang Y; Li B; Zhao M; Xie L; Huang W; Zhang H
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5425-8. PubMed ID: 25760801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal 2D nanosheets of MoS
    Grayfer ED; Kozlova MN; Fedorov VE
    Adv Colloid Interface Sci; 2017 Jul; 245():40-61. PubMed ID: 28477866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Coupling Behavior of Stacked Heterostructures Based on MoS
    Wang F; Wang J; Guo S; Zhang J; Hu Z; Chu J
    Sci Rep; 2017 Mar; 7():44712. PubMed ID: 28303932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional transition metal dichalcogenide nanosheet-based composites.
    Tan C; Zhang H
    Chem Soc Rev; 2015 May; 44(9):2713-31. PubMed ID: 25292209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-Level Alignment at Interfaces between Transition-Metal Dichalcogenide Monolayers and Metal Electrodes Studied with Kelvin Probe Force Microscopy.
    Markeev PA; Najafidehaghani E; Gan Z; Sotthewes K; George A; Turchanin A; de Jong MP
    J Phys Chem C Nanomater Interfaces; 2021 Jun; 125(24):13551-13559. PubMed ID: 34239657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.